static_stability#

metpy.calc.static_stability(pressure, temperature, vertical_dim=0)[source]#

Calculate the static stability within a vertical profile.

$\sigma = -\frac{RT}{p} \frac{\partial \ln \theta}{\partial p}$

This formula is based on equation 4.3.6 in [Bluestein1992].

Parameters:
Returns:

pint.Quantity – The profile of static stability

Examples

>>> from metpy.calc import static_stability
>>> from metpy.units import units
>>> # pressure
>>> p = [1008., 1000., 950., 900., 850., 800., 750., 700., 650., 600.,
...      550., 500., 450., 400., 350., 300., 250., 200.,
...      175., 150., 125., 100., 80., 70., 60., 50.,
...      40., 30., 25., 20.] * units.hPa
>>> # temperature
>>> T = [29.3, 28.1, 23.5, 20.9, 18.4, 15.9, 13.1, 10.1, 6.7, 3.1,
...      -0.5, -4.5, -9.0, -14.8, -21.5, -29.7, -40.0, -52.4,
...      -59.2, -66.5, -74.1, -78.5, -76.0, -71.6, -66.7, -61.3,
...      -56.3, -51.7, -50.7, -47.5] * units.degC
>>> # Static Stability Parameter
>>> static_stability(p, T).to('m^2 s^-2 Pa^-2')
<Quantity([-2.06389302e-06 -1.60051176e-06  5.29948840e-07  1.35399713e-06
1.62475780e-06  1.80616992e-06  1.95909329e-06  2.12257341e-06
2.35051280e-06  2.86326649e-06  3.44288781e-06  3.95797199e-06
4.15532473e-06  4.32460872e-06  4.70381191e-06  4.60700187e-06
4.80962228e-06  7.72162917e-06  1.13637163e-05  1.89412484e-05
5.12162481e-05  1.59883754e-04  3.74228296e-04  5.30145977e-04
7.20889325e-04  1.00335001e-03  1.48043778e-03  2.32777913e-03
3.43878993e-03  5.74908298e-03], 'meter ** 2 / second ** 2 / pascal ** 2')>


Changed in version 1.0: Renamed axis parameter vertical_dim

Static Stability

Static Stability