metpy.calc.inertial_advective_wind(u, v, u_geostrophic, v_geostrophic, dx=None, dy=None, latitude=None, x_dim=-1, y_dim=-2, *, parallel_scale=None, meridional_scale=None, longitude=None, crs=None)[source]#

$\frac{\hat k}{f} \times (\vec V \cdot \nabla)\hat V_g$
$\frac{\hat k}{f} \times \left[ \left( u \frac{\partial u_g}{\partial x} + v \frac{\partial u_g}{\partial y} \right) \hat i + \left( u \frac{\partial v_g} {\partial x} + v \frac{\partial v_g}{\partial y} \right) \hat j \right]$
$\left[ -\frac{1}{f}\left(u \frac{\partial v_g}{\partial x} + v \frac{\partial v_g}{\partial y} \right) \right] \hat i + \left[ \frac{1}{f} \left( u \frac{\partial u_g}{\partial x} + v \frac{\partial u_g}{\partial y} \right) \right] \hat j$

This formula is based on equation 27 of [Rochette2006].

Parameters:
Returns:

Notes

Many forms of the inertial advective wind assume the advecting and advected wind to both be the geostrophic wind. To do so, pass the x and y components of the geostrophic wind for u and u_geostrophic/v and v_geostrophic.

Changed in version 1.0: Changed signature from (u, v, u_geostrophic, v_geostrophic, dx, dy, lats)