interpolate¶
Provides tools for interpolating data.
Functions
cross_section(data, start, end[, steps, …]) |
Obtain an interpolated cross-sectional slice through gridded data. |
geodesic(crs, start, end, steps) |
Construct a geodesic path between two points. |
interpolate(x, y, z[, interp_type, hres, …]) |
Interpolate given (x,y), observation (z) pairs to a grid based on given parameters. |
interpolate_1d(x, xp, *args, **kwargs) |
Interpolates data with any shape over a specified axis. |
interpolate_nans_1d(x, y[, kind]) |
Interpolate NaN values in y. |
interpolate_to_grid(x, y, z[, interp_type, …]) |
Interpolate given (x,y), observation (z) pairs to a grid based on given parameters. |
interpolate_to_points(points, values, xi[, …]) |
Interpolate unstructured point data to the given points. |
interpolate_to_slice(data, points[, interp_type]) |
Obtain an interpolated slice through data using xarray. |
inverse_distance(xp, yp, variable, grid_x, …) |
Generate an inverse distance interpolation of the given points to a regular grid. |
inverse_distance_to_grid(xp, yp, variable, …) |
Generate an inverse distance interpolation of the given points to a regular grid. |
inverse_distance_to_points(points, values, xi, r) |
Generate an inverse distance weighting interpolation to the given points. |
log_interpolate_1d(x, xp, *args, **kwargs) |
Interpolates data with logarithmic x-scale over a specified axis. |
natural_neighbor(xp, yp, variable, grid_x, …) |
Generate a natural neighbor interpolation of the given points to a regular grid. |
natural_neighbor_to_grid(xp, yp, variable, …) |
Generate a natural neighbor interpolation of the given points to a regular grid. |
natural_neighbor_to_points(points, values, xi) |
Generate a natural neighbor interpolation to the given points. |
remove_nan_observations(x, y, z) |
Remove all x, y, and z where z is nan. |
remove_observations_below_value(x, y, z[, val]) |
Remove all x, y, and z where z is less than val. |
remove_repeat_coordinates(x, y, z) |
Remove all x, y, and z where (x,y) is repeated and keep the first occurrence only. |