NDBC Latest Data Request

This example shows how to use siphon’s simplewebswervice support query the most recent observations from all of the NDBC buoys at once.

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt

from siphon.simplewebservice.ndbc import NDBC

Get a pandas data frame of all of the observations

station latitude longitude wind_direction wind_speed wind_gust wave_height dominant_wave_period average_wave_period dominant_wave_direction pressure 3hr_pressure_tendency air_temperature water_temperature dewpoint visibility water_level_above_mean time
0 13001 12.0 -23.0 49.0 8.9 11.1 NaN NaN NaN NaN 1012.8 NaN 23.8 25.2 NaN NaN NaN 2025-01-24 19:00:00+00:00
1 13002 21.0 -23.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 22.9 NaN NaN NaN 2025-01-24 19:00:00+00:00
2 13008 15.0 -38.0 67.0 10.5 13.2 NaN NaN NaN NaN 1016.1 NaN 24.5 25.7 NaN NaN NaN 2025-01-24 19:00:00+00:00
3 14048 -8.0 65.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 29.0 NaN NaN NaN 2025-01-24 19:00:00+00:00
4 14049 -12.0 65.0 120.0 5.3 6.3 NaN NaN NaN NaN 1009.0 NaN 28.3 NaN NaN NaN NaN 2025-01-24 19:00:00+00:00


In this case I’m going to drop buoys that do not have water temperature measurements.

df.dropna(subset=['water_temperature'], inplace=True)

Let’s make a simple plot of the buoy positions and color by water temperature

proj = ccrs.LambertConformal(central_latitude=45., central_longitude=-100.,
                             standard_parallels=[30, 60])

fig = plt.figure(figsize=(17., 11.))
ax = plt.axes(projection=proj)
ax.coastlines('50m', edgecolor='black')
ax.add_feature(cfeature.OCEAN.with_scale('50m'))
ax.add_feature(cfeature.LAND.with_scale('50m'))
ax.set_extent([-85, -75, 25, 30], ccrs.PlateCarree())

ax.scatter(df['longitude'], df['latitude'], c=df['water_temperature'],
           transform=ccrs.PlateCarree())

plt.show()
latest request

Total running time of the script: (0 minutes 5.778 seconds)

Gallery generated by Sphinx-Gallery