interpolate_1d¶
- 
metpy.interpolate.interpolate_1d(x, xp, *args, axis=0, fill_value=nan, return_list_always=False)[source]¶
- Interpolates data with any shape over a specified axis. - Interpolation over a specified axis for arrays of any shape. - Parameters
- x (array-like) – 1-D array of desired interpolated values. 
- xp (array-like) – The x-coordinates of the data points. 
- args (array-like) – The data to be interpolated. Can be multiple arguments, all must be the same shape as xp. 
- axis (int, optional) – The axis to interpolate over. Defaults to 0. 
- fill_value (float, optional) – Specify handling of interpolation points out of data bounds. If None, will return ValueError if points are out of bounds. Defaults to nan. 
- return_list_always (bool, optional) – Whether to always return a list of interpolated arrays, even when only a single array is passed to args. Defaults to - False.
 
- Returns
- array-like – Interpolated values for each point with coordinates sorted in ascending order. 
 - Examples - >>> x = np.array([1., 2., 3., 4.]) >>> y = np.array([1., 2., 3., 4.]) >>> x_interp = np.array([2.5, 3.5]) >>> metpy.interpolate.interpolate_1d(x_interp, x, y) array([2.5, 3.5]) - Notes - xp and args must be the same shape.