# Source code for metpy.calc.thermo

# Copyright (c) 2008,2015,2016,2017,2018 MetPy Developers.
"""Contains a collection of thermodynamic calculations."""

from __future__ import division

import warnings

import numpy as np
import scipy.integrate as si
import scipy.optimize as so

from .tools import (_greater_or_close, _less_or_close, find_bounding_indices,
find_intersections, first_derivative, get_layer)
from ..constants import Cp_d, epsilon, g, kappa, Lv, P0, Rd
from ..interpolate.one_dimension import interpolate_1d
from ..package_tools import Exporter
from ..units import atleast_1d, check_units, concatenate, units
from ..xarray import preprocess_xarray

exporter = Exporter(globals())

sat_pressure_0c = 6.112 * units.millibar

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]', '[temperature]')
def relative_humidity_from_dewpoint(temperature, dewpt):
r"""Calculate the relative humidity.

Uses temperature and dewpoint in celsius to calculate relative
humidity using the ratio of vapor pressure to saturation vapor pressures.

Parameters
----------
temperature : pint.Quantity
The temperature
dew point : pint.Quantity
The dew point temperature

Returns
-------
pint.Quantity
The relative humidity

--------
saturation_vapor_pressure

"""
e = saturation_vapor_pressure(dewpt)
e_s = saturation_vapor_pressure(temperature)
return (e / e_s)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[pressure]')
def exner_function(pressure, reference_pressure=P0):
r"""Calculate the Exner function.

.. math:: \Pi = \left( \frac{p}{p_0} \right)^\kappa

This can be used to calculate potential temperature from temperature (and visa-versa),
since

.. math:: \Pi = \frac{T}{\theta}

Parameters
----------
pressure : pint.Quantity
The total atmospheric pressure
reference_pressure : pint.Quantity, optional
The reference pressure against which to calculate the Exner function, defaults to P0

Returns
-------
pint.Quantity
The value of the Exner function at the given pressure

--------
potential_temperature
temperature_from_potential_temperature

"""
return (pressure / reference_pressure).to('dimensionless')**kappa

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def potential_temperature(pressure, temperature):
r"""Calculate the potential temperature.

Uses the Poisson equation to calculation the potential temperature
given pressure and temperature.

Parameters
----------
pressure : pint.Quantity
The total atmospheric pressure
temperature : pint.Quantity
The temperature

Returns
-------
pint.Quantity
The potential temperature corresponding to the temperature and
pressure.

--------
dry_lapse

Notes
-----
Formula:

.. math:: \Theta = T (P_0 / P)^\kappa

Examples
--------
>>> from metpy.units import units
>>> metpy.calc.potential_temperature(800. * units.mbar, 273. * units.kelvin)
<Quantity(290.96653180346203, 'kelvin')>

"""
return temperature / exner_function(pressure)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def temperature_from_potential_temperature(pressure, theta):
r"""Calculate the temperature from a given potential temperature.

Uses the inverse of the Poisson equation to calculate the temperature from a
given potential temperature at a specific pressure level.

Parameters
----------
pressure : pint.Quantity
The total atmospheric pressure
theta : pint.Quantity
The potential temperature

Returns
-------
pint.Quantity
The temperature corresponding to the potential temperature and pressure.

--------
dry_lapse
potential_temperature

Notes
-----
Formula:

.. math:: T = \Theta (P / P_0)^\kappa

Examples
--------
>>> from metpy.units import units
>>> from metpy.calc import temperature_from_potential_temperature
>>> # potential temperature
>>> theta = np.array([ 286.12859679, 288.22362587]) * units.kelvin
>>> p = 850 * units.mbar
>>> T = temperature_from_potential_temperature(p,theta)

"""
return theta * exner_function(pressure)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def dry_lapse(pressure, temperature):
r"""Calculate the temperature at a level assuming only dry processes.

This function lifts a parcel starting at temperature, conserving
potential temperature. The starting pressure should be the first item in
the pressure array.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure level(s) of interest
temperature : pint.Quantity
The starting temperature

Returns
-------
pint.Quantity
The resulting parcel temperature at levels given by pressure

--------
moist_lapse : Calculate parcel temperature assuming liquid saturation
processes
parcel_profile : Calculate complete parcel profile
potential_temperature

"""
return temperature * (pressure / pressure[0])**kappa

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def moist_lapse(pressure, temperature):
r"""Calculate the temperature at a level assuming liquid saturation processes.

This function lifts a parcel starting at temperature. The starting
pressure should be the first item in the pressure array. Essentially,
this function is calculating moist pseudo-adiabats.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure level(s) of interest
temperature : pint.Quantity
The starting temperature

Returns
-------
pint.Quantity
The temperature corresponding to the starting temperature and
pressure levels.

--------
dry_lapse : Calculate parcel temperature assuming dry adiabatic processes
parcel_profile : Calculate complete parcel profile

Notes
-----
This function is implemented by integrating the following differential
equation:

.. math:: \frac{dT}{dP} = \frac{1}{P} \frac{R_d T + L_v r_s}
{C_{pd} + \frac{L_v^2 r_s \epsilon}{R_d T^2}}

This equation comes from [Bakhshaii2013]_.

"""
def dt(t, p):
t = units.Quantity(t, temperature.units)
p = units.Quantity(p, pressure.units)
rs = saturation_mixing_ratio(p, t)
frac = ((Rd * t + Lv * rs) /
(Cp_d + (Lv * Lv * rs * epsilon / (Rd * t * t)))).to('kelvin')
return frac / p
return units.Quantity(si.odeint(dt, atleast_1d(temperature).squeeze(),
pressure.squeeze()).T.squeeze(), temperature.units)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def lcl(pressure, temperature, dewpt, max_iters=50, eps=1e-5):
r"""Calculate the lifted condensation level (LCL) using from the starting point.

The starting state for the parcel is defined by temperature, dewpt,
and pressure.

Parameters
----------
pressure : pint.Quantity
The starting atmospheric pressure
temperature : pint.Quantity
The starting temperature
dewpt : pint.Quantity
The starting dew point

Returns
-------
(pint.Quantity, pint.Quantity)
The LCL pressure and temperature

Other Parameters
----------------
max_iters : int, optional
The maximum number of iterations to use in calculation, defaults to 50.
eps : float, optional
The desired relative error in the calculated value, defaults to 1e-5.

--------
parcel_profile

Notes
-----
This function is implemented using an iterative approach to solve for the
LCL. The basic algorithm is:

1. Find the dew point from the LCL pressure and starting mixing ratio
2. Find the LCL pressure from the starting temperature and dewpoint
3. Iterate until convergence

The function is guaranteed to finish by virtue of the max_iters counter.

"""
def _lcl_iter(p, p0, w, t):
td = dewpoint(vapor_pressure(units.Quantity(p, pressure.units), w))
return (p0 * (td / t) ** (1. / kappa)).m

w = mixing_ratio(saturation_vapor_pressure(dewpt), pressure)
fp = so.fixed_point(_lcl_iter, pressure.m, args=(pressure.m, w, temperature),
xtol=eps, maxiter=max_iters)
lcl_p = fp * pressure.units
return lcl_p, dewpoint(vapor_pressure(lcl_p, w))

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]')
def lfc(pressure, temperature, dewpt, parcel_temperature_profile=None):
r"""Calculate the level of free convection (LFC).

This works by finding the first intersection of the ideal parcel path and
the measured parcel temperature.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure
temperature : pint.Quantity
The temperature at the levels given by pressure
dewpt : pint.Quantity
The dew point at the levels given by pressure
parcel_temperature_profile: pint.Quantity, optional
The parcel temperature profile from which to calculate the LFC. Defaults to the
surface parcel profile.

Returns
-------
pint.Quantity
The LFC pressure and temperature

--------
parcel_profile

"""
# Default to surface parcel if no profile or starting pressure level is given
if parcel_temperature_profile is None:
new_stuff = parcel_profile_with_lcl(pressure, temperature, dewpt)
pressure, temperature, _, parcel_temperature_profile = new_stuff
temperature = temperature.to('degC')
parcel_temperature_profile = parcel_temperature_profile.to('degC')

# The parcel profile and data have the same first data point, so we ignore
# that point to get the real first intersection for the LFC calculation.
x, y = find_intersections(pressure[1:], parcel_temperature_profile[1:],
temperature[1:], direction='increasing')

# The LFC could:
# 1) Not exist
# 2) Exist but be equal to the LCL
# 3) Exist and be above the LCL

# LFC does not exist or is LCL
if len(x) == 0:
if np.all(_less_or_close(parcel_temperature_profile, temperature)):
# LFC doesn't exist
return np.nan * pressure.units, np.nan * temperature.units
else:  # LFC = LCL
x, y = lcl(pressure[0], temperature[0], dewpt[0])
return x, y

# LFC exists and is not LCL. Make sure it is above the LCL.
else:
idx = x < lcl(pressure[0], temperature[0], dewpt[0])[0]
x = x[idx]
y = y[idx]
return x[0], y[0]

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]')
def el(pressure, temperature, dewpt, parcel_temperature_profile=None):
r"""Calculate the equilibrium level.

This works by finding the last intersection of the ideal parcel path and
the measured environmental temperature. If there is one or fewer intersections, there is
no equilibrium level.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure
temperature : pint.Quantity
The temperature at the levels given by pressure
dewpt : pint.Quantity
The dew point at the levels given by pressure
parcel_temperature_profile: pint.Quantity, optional
The parcel temperature profile from which to calculate the EL. Defaults to the
surface parcel profile.

Returns
-------
pint.Quantity, pint.Quantity
The EL pressure and temperature

--------
parcel_profile

"""
# Default to surface parcel if no profile or starting pressure level is given
if parcel_temperature_profile is None:
new_stuff = parcel_profile_with_lcl(pressure, temperature, dewpt)
pressure, temperature, _, parcel_temperature_profile = new_stuff
temperature = temperature.to('degC')
parcel_temperature_profile = parcel_temperature_profile.to('degC')

# If the top of the sounding parcel is warmer than the environment, there is no EL
if parcel_temperature_profile[-1] > temperature[-1]:
return np.nan * pressure.units, np.nan * temperature.units

# Otherwise the last intersection (as long as there is one) is the EL
x, y = find_intersections(pressure[1:], parcel_temperature_profile[1:], temperature[1:])
if len(x) > 0:
return x[-1], y[-1]
else:
return np.nan * pressure.units, np.nan * temperature.units

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def parcel_profile(pressure, temperature, dewpt):
r"""Calculate the profile a parcel takes through the atmosphere.

The parcel starts at temperature, and dewpt, lifted up
pressure specifies the pressure levels for the profile.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure level(s) of interest. The first entry should be the starting
point pressure.
temperature : pint.Quantity
The starting temperature
dewpt : pint.Quantity
The starting dew point

Returns
-------
pint.Quantity
The parcel temperatures at the specified pressure levels.

--------
lcl, moist_lapse, dry_lapse

"""
_, _, _, t_l, _, t_u = _parcel_profile_helper(pressure, temperature, dewpt)
return concatenate((t_l, t_u))

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def parcel_profile_with_lcl(pressure, temperature, dewpt):
r"""Calculate the profile a parcel takes through the atmosphere.

The parcel starts at temperature, and dewpt, lifted up
pressure specifies the pressure levels for the profile. This function returns
a profile that includes the LCL.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure level(s) of interest. The first entry should be the starting
point pressure.
temperature : pint.Quantity
The atmospheric temperature at the levels in pressure. The first entry should be the
starting point temperature.
dewpt : pint.Quantity
The atmospheric dew point at the levels in pressure. The first entry should be the
starting dew point.

Returns
-------
pressure : pint.Quantity
The parcel profile pressures, which includes the specified levels and the LCL
ambient_temperature : pint.Quantity
The atmospheric temperature values, including the value interpolated to the LCL level
ambient_dew_point : pint.Quantity
The atmospheric dew point values, including the value interpolated to the LCL level
profile_temperature : pint.Quantity
The parcel profile temperatures at all of the levels in the returned pressures array,
including the LCL.

--------
lcl, moist_lapse, dry_lapse, parcel_profile

"""
p_l, p_lcl, p_u, t_l, t_lcl, t_u = _parcel_profile_helper(pressure, temperature[0],
dewpt[0])
new_press = concatenate((p_l, p_lcl, p_u))
prof_temp = concatenate((t_l, t_lcl, t_u))
new_temp = _insert_lcl_level(pressure, temperature, p_lcl)
new_dewp = _insert_lcl_level(pressure, dewpt, p_lcl)
return new_press, new_temp, new_dewp, prof_temp

def _parcel_profile_helper(pressure, temperature, dewpt):
"""Help calculate parcel profiles.

Returns the temperature and pressure, above, below, and including the LCL. The
other calculation functions decide what to do with the pieces.

"""
# Find the LCL
press_lcl, temp_lcl = lcl(pressure[0], temperature, dewpt)
press_lcl = press_lcl.to(pressure.units)

# Find the dry adiabatic profile, *including* the LCL. We need >= the LCL in case the
# LCL is included in the levels. It's slightly redundant in that case, but simplifies
# the logic for removing it later.
press_lower = concatenate((pressure[pressure >= press_lcl], press_lcl))
temp_lower = dry_lapse(press_lower, temperature)

# If the pressure profile doesn't make it to the lcl, we can stop here
if _greater_or_close(np.nanmin(pressure), press_lcl.m):
return (press_lower[:-1], press_lcl, np.array([]) * press_lower.units,
temp_lower[:-1], temp_lcl, np.array([]) * temp_lower.units)

# Find moist pseudo-adiabatic profile starting at the LCL
press_upper = concatenate((press_lcl, pressure[pressure < press_lcl]))
temp_upper = moist_lapse(press_upper, temp_lower[-1]).to(temp_lower.units)

# Return profile pieces
return (press_lower[:-1], press_lcl, press_upper[1:],
temp_lower[:-1], temp_lcl, temp_upper[1:])

def _insert_lcl_level(pressure, temperature, lcl_pressure):
"""Insert the LCL pressure into the profile."""
interp_temp = interpolate_1d(lcl_pressure, pressure, temperature)

# Pressure needs to be increasing for searchsorted, so flip it and then convert
# the index back to the original array
loc = pressure.size - pressure[::-1].searchsorted(lcl_pressure)
return np.insert(temperature.m, loc, interp_temp.m) * temperature.units

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[dimensionless]')
def vapor_pressure(pressure, mixing):
r"""Calculate water vapor (partial) pressure.

Given total pressure and water vapor mixing ratio, calculates the
partial pressure of water vapor.

Parameters
----------
pressure : pint.Quantity
total atmospheric pressure
mixing : pint.Quantity
dimensionless mass mixing ratio

Returns
-------
pint.Quantity
The ambient water vapor (partial) pressure in the same units as
pressure.

Notes
-----
This function is a straightforward implementation of the equation given in many places,
such as [Hobbs1977]_ pg.71:

.. math:: e = p \frac{r}{r + \epsilon}

--------
saturation_vapor_pressure, dewpoint

"""
return pressure * mixing / (epsilon + mixing)

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]')
def saturation_vapor_pressure(temperature):
r"""Calculate the saturation water vapor (partial) pressure.

Parameters
----------
temperature : pint.Quantity
The temperature

Returns
-------
pint.Quantity
The saturation water vapor (partial) pressure

--------
vapor_pressure, dewpoint

Notes
-----
Instead of temperature, dewpoint may be used in order to calculate
the actual (ambient) water vapor (partial) pressure.

The formula used is that from [Bolton1980]_ for T in degrees Celsius:

.. math:: 6.112 e^\frac{17.67T}{T + 243.5}

"""
# Converted from original in terms of C to use kelvin. Using raw absolute values of C in
# a formula plays havoc with units support.
return sat_pressure_0c * np.exp(17.67 * (temperature - 273.15 * units.kelvin) /
(temperature - 29.65 * units.kelvin))

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]', '[dimensionless]')
def dewpoint_rh(temperature, rh):
r"""Calculate the ambient dewpoint given air temperature and relative humidity.

Parameters
----------
temperature : pint.Quantity
Air temperature
rh : pint.Quantity
Relative humidity expressed as a ratio in the range 0 < rh <= 1

Returns
-------
pint.Quantity
The dew point temperature

--------
dewpoint, saturation_vapor_pressure

"""
if np.any(rh > 1.2):
warnings.warn('Relative humidity >120%, ensure proper units.')
return dewpoint(rh * saturation_vapor_pressure(temperature))

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]')
def dewpoint(e):
r"""Calculate the ambient dewpoint given the vapor pressure.

Parameters
----------
e : pint.Quantity
Water vapor partial pressure

Returns
-------
pint.Quantity
Dew point temperature

--------
dewpoint_rh, saturation_vapor_pressure, vapor_pressure

Notes
-----
This function inverts the [Bolton1980]_ formula for saturation vapor
pressure to instead calculate the temperature. This yield the following
formula for dewpoint in degrees Celsius:

.. math:: T = \frac{243.5 log(e / 6.112)}{17.67 - log(e / 6.112)}

"""
val = np.log(e / sat_pressure_0c)
return 0. * units.degC + 243.5 * units.delta_degC * val / (17.67 - val)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[pressure]', '[dimensionless]')
def mixing_ratio(part_press, tot_press, molecular_weight_ratio=epsilon):
r"""Calculate the mixing ratio of a gas.

This calculates mixing ratio given its partial pressure and the total pressure of
the air. There are no required units for the input arrays, other than that
they have the same units.

Parameters
----------
part_press : pint.Quantity
Partial pressure of the constituent gas
tot_press : pint.Quantity
Total air pressure
molecular_weight_ratio : pint.Quantity or float, optional
The ratio of the molecular weight of the constituent gas to that assumed
for air. Defaults to the ratio for water vapor to dry air
(:math:\epsilon\approx0.622).

Returns
-------
pint.Quantity
The (mass) mixing ratio, dimensionless (e.g. Kg/Kg or g/g)

Notes
-----
This function is a straightforward implementation of the equation given in many places,
such as [Hobbs1977]_ pg.73:

.. math:: r = \epsilon \frac{e}{p - e}

--------
saturation_mixing_ratio, vapor_pressure

"""
return (molecular_weight_ratio *
part_press / (tot_press - part_press)).to('dimensionless')

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def saturation_mixing_ratio(tot_press, temperature):
r"""Calculate the saturation mixing ratio of water vapor.

This calculation is given total pressure and the temperature. The implementation
uses the formula outlined in [Hobbs1977]_ pg.73.

Parameters
----------
tot_press: pint.Quantity
Total atmospheric pressure
temperature: pint.Quantity
The temperature

Returns
-------
pint.Quantity
The saturation mixing ratio, dimensionless

"""
return mixing_ratio(saturation_vapor_pressure(temperature), tot_press)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def equivalent_potential_temperature(pressure, temperature, dewpoint):
r"""Calculate equivalent potential temperature.

This calculation must be given an air parcel's pressure, temperature, and dewpoint.
The implementation uses the formula outlined in [Bolton1980]_:

First, the LCL temperature is calculated:

.. math:: T_{L}=\frac{1}{\frac{1}{T_{D}-56}+\frac{ln(T_{K}/T_{D})}{800}}+56

Which is then used to calculate the potential temperature at the LCL:

.. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k
\left(\frac{T_{K}}{T_{L}}\right)^{.28r}

Both of these are used to calculate the final equivalent potential temperature:

.. math:: \theta_{E}=\theta_{DL}\exp\left[\left(\frac{3036.}{T_{L}}
-1.78\right)*r(1+.448r)\right]

Parameters
----------
pressure: pint.Quantity
Total atmospheric pressure
temperature: pint.Quantity
Temperature of parcel
dewpoint: pint.Quantity
Dewpoint of parcel

Returns
-------
pint.Quantity
The equivalent potential temperature of the parcel

Notes
-----
[Bolton1980]_ formula for Theta-e is used, since according to
[DaviesJones2009]_ it is the most accurate non-iterative formulation
available.

"""
t = temperature.to('kelvin').magnitude
td = dewpoint.to('kelvin').magnitude
p = pressure.to('hPa').magnitude
e = saturation_vapor_pressure(dewpoint).to('hPa').magnitude
r = saturation_mixing_ratio(pressure, dewpoint).magnitude

t_l = 56 + 1. / (1. / (td - 56) + np.log(t / td) / 800.)
th_l = t * (1000 / (p - e)) ** kappa * (t / t_l) ** (0.28 * r)
th_e = th_l * np.exp((3036. / t_l - 1.78) * r * (1 + 0.448 * r))

return th_e * units.kelvin

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def saturation_equivalent_potential_temperature(pressure, temperature):
r"""Calculate saturation equivalent potential temperature.

This calculation must be given an air parcel's pressure and temperature.
The implementation uses the formula outlined in [Bolton1980]_ for the
equivalent potential temperature, and assumes a saturated process.

First, because we assume a saturated process, the temperature at the LCL is
equivalent to the current temperature. Therefore the following equation

.. math:: T_{L}=\frac{1}{\frac{1}{T_{D}-56}+\frac{ln(T_{K}/T_{D})}{800}}+56

reduces to

.. math:: T_{L} = T_{K}

Then the potential temperature at the temperature/LCL is calculated:

.. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k
\left(\frac{T_{K}}{T_{L}}\right)^{.28r}

However, because

.. math:: T_{L} = T_{K}

it follows that

.. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k

Both of these are used to calculate the final equivalent potential temperature:

.. math:: \theta_{E}=\theta_{DL}\exp\left[\left(\frac{3036.}{T_{K}}
-1.78\right)*r(1+.448r)\right]

Parameters
----------
pressure: pint.Quantity
Total atmospheric pressure
temperature: pint.Quantity
Temperature of parcel

Returns
-------
pint.Quantity
The saturation equivalent potential temperature of the parcel

Notes
-----
[Bolton1980]_ formula for Theta-e is used (for saturated case), since according to
[DaviesJones2009]_ it is the most accurate non-iterative formulation
available.

"""
t = temperature.to('kelvin').magnitude
p = pressure.to('hPa').magnitude
e = saturation_vapor_pressure(temperature).to('hPa').magnitude
r = saturation_mixing_ratio(pressure, temperature).magnitude

th_l = t * (1000 / (p - e)) ** kappa
th_es = th_l * np.exp((3036. / t - 1.78) * r * (1 + 0.448 * r))

return th_es * units.kelvin

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]', '[dimensionless]', '[dimensionless]')
def virtual_temperature(temperature, mixing, molecular_weight_ratio=epsilon):
r"""Calculate virtual temperature.

This calculation must be given an air parcel's temperature and mixing ratio.
The implementation uses the formula outlined in [Hobbs2006]_ pg.80.

Parameters
----------
temperature: pint.Quantity
The temperature
mixing : pint.Quantity
dimensionless mass mixing ratio
molecular_weight_ratio : pint.Quantity or float, optional
The ratio of the molecular weight of the constituent gas to that assumed
for air. Defaults to the ratio for water vapor to dry air.
(:math:\epsilon\approx0.622).

Returns
-------
pint.Quantity
The corresponding virtual temperature of the parcel

Notes
-----
.. math:: T_v = T \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})}

"""
return temperature * ((mixing + molecular_weight_ratio) /
(molecular_weight_ratio * (1 + mixing)))

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[dimensionless]', '[dimensionless]')
def virtual_potential_temperature(pressure, temperature, mixing,
molecular_weight_ratio=epsilon):
r"""Calculate virtual potential temperature.

This calculation must be given an air parcel's pressure, temperature, and mixing ratio.
The implementation uses the formula outlined in [Markowski2010]_ pg.13.

Parameters
----------
pressure: pint.Quantity
Total atmospheric pressure
temperature: pint.Quantity
The temperature
mixing : pint.Quantity
dimensionless mass mixing ratio
molecular_weight_ratio : pint.Quantity or float, optional
The ratio of the molecular weight of the constituent gas to that assumed
for air. Defaults to the ratio for water vapor to dry air.
(:math:\epsilon\approx0.622).

Returns
-------
pint.Quantity
The corresponding virtual potential temperature of the parcel

Notes
-----
.. math:: \Theta_v = \Theta \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})}

"""
pottemp = potential_temperature(pressure, temperature)
return virtual_temperature(pottemp, mixing, molecular_weight_ratio)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[dimensionless]', '[dimensionless]')
def density(pressure, temperature, mixing, molecular_weight_ratio=epsilon):
r"""Calculate density.

This calculation must be given an air parcel's pressure, temperature, and mixing ratio.
The implementation uses the formula outlined in [Hobbs2006]_ pg.67.

Parameters
----------
temperature: pint.Quantity
The temperature
pressure: pint.Quantity
Total atmospheric pressure
mixing : pint.Quantity
dimensionless mass mixing ratio
molecular_weight_ratio : pint.Quantity or float, optional
The ratio of the molecular weight of the constituent gas to that assumed
for air. Defaults to the ratio for water vapor to dry air.
(:math:\epsilon\approx0.622).

Returns
-------
pint.Quantity
The corresponding density of the parcel

Notes
-----
.. math:: \rho = \frac{p}{R_dT_v}

"""
virttemp = virtual_temperature(temperature, mixing, molecular_weight_ratio)
return (pressure / (Rd * virttemp)).to(units.kilogram / units.meter ** 3)

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]', '[temperature]', '[pressure]')
def relative_humidity_wet_psychrometric(dry_bulb_temperature, web_bulb_temperature,
pressure, **kwargs):
r"""Calculate the relative humidity with wet bulb and dry bulb temperatures.

This uses a psychrometric relationship as outlined in [WMO8-2014]_, with
coefficients from [Fan1987]_.

Parameters
----------
dry_bulb_temperature: pint.Quantity
Dry bulb temperature
web_bulb_temperature: pint.Quantity
Wet bulb temperature
pressure: pint.Quantity
Total atmospheric pressure

Returns
-------
pint.Quantity
Relative humidity

Notes
-----
.. math:: RH = \frac{e}{e_s}

* :math:RH is relative humidity as a unitless ratio
* :math:e is vapor pressure from the wet psychrometric calculation
* :math:e_s is the saturation vapor pressure

--------
psychrometric_vapor_pressure_wet, saturation_vapor_pressure

"""
return (psychrometric_vapor_pressure_wet(dry_bulb_temperature, web_bulb_temperature,
pressure, **kwargs) /
saturation_vapor_pressure(dry_bulb_temperature))

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]', '[temperature]', '[pressure]')
def psychrometric_vapor_pressure_wet(dry_bulb_temperature, wet_bulb_temperature, pressure,
psychrometer_coefficient=6.21e-4 / units.kelvin):
r"""Calculate the vapor pressure with wet bulb and dry bulb temperatures.

This uses a psychrometric relationship as outlined in [WMO8-2014]_, with
coefficients from [Fan1987]_.

Parameters
----------
dry_bulb_temperature: pint.Quantity
Dry bulb temperature
wet_bulb_temperature: pint.Quantity
Wet bulb temperature
pressure: pint.Quantity
Total atmospheric pressure
psychrometer_coefficient: pint.Quantity, optional
Psychrometer coefficient. Defaults to 6.21e-4 K^-1.

Returns
-------
pint.Quantity
Vapor pressure

Notes
-----
.. math:: e' = e'_w(T_w) - A p (T - T_w)

* :math:e' is vapor pressure
* :math:e'_w(T_w) is the saturation vapor pressure with respect to water at temperature
:math:T_w
* :math:p is the pressure of the wet bulb
* :math:T is the temperature of the dry bulb
* :math:T_w is the temperature of the wet bulb
* :math:A is the psychrometer coefficient

Psychrometer coefficient depends on the specific instrument being used and the ventilation
of the instrument.

--------
saturation_vapor_pressure

"""
return (saturation_vapor_pressure(wet_bulb_temperature) - psychrometer_coefficient *
pressure * (dry_bulb_temperature - wet_bulb_temperature).to('kelvin'))

[docs]@exporter.export
@preprocess_xarray
@check_units('[dimensionless]', '[temperature]', '[pressure]')
def mixing_ratio_from_relative_humidity(relative_humidity, temperature, pressure):
r"""Calculate the mixing ratio from relative humidity, temperature, and pressure.

Parameters
----------
relative_humidity: array_like
The relative humidity expressed as a unitless ratio in the range [0, 1]. Can also pass
a percentage if proper units are attached.
temperature: pint.Quantity
Air temperature
pressure: pint.Quantity
Total atmospheric pressure

Returns
-------
pint.Quantity
Dimensionless mixing ratio

Notes
-----
Formula adapted from [Hobbs1977]_ pg. 74.

.. math:: w = (RH)(w_s)

* :math:w is mixing ratio
* :math:RH is relative humidity as a unitless ratio
* :math:w_s is the saturation mixing ratio

--------
relative_humidity_from_mixing_ratio, saturation_mixing_ratio

"""
return (relative_humidity *
saturation_mixing_ratio(pressure, temperature)).to('dimensionless')

[docs]@exporter.export
@preprocess_xarray
@check_units('[dimensionless]', '[temperature]', '[pressure]')
def relative_humidity_from_mixing_ratio(mixing_ratio, temperature, pressure):
r"""Calculate the relative humidity from mixing ratio, temperature, and pressure.

Parameters
----------
mixing_ratio: pint.Quantity
Dimensionless mass mixing ratio
temperature: pint.Quantity
Air temperature
pressure: pint.Quantity
Total atmospheric pressure

Returns
-------
pint.Quantity
Relative humidity

Notes
-----
Formula based on that from [Hobbs1977]_ pg. 74.

.. math:: RH = \frac{w}{w_s}

* :math:RH is relative humidity as a unitless ratio
* :math:w is mixing ratio
* :math:w_s is the saturation mixing ratio

--------
mixing_ratio_from_relative_humidity, saturation_mixing_ratio

"""
return mixing_ratio / saturation_mixing_ratio(pressure, temperature)

[docs]@exporter.export
@preprocess_xarray
@check_units('[dimensionless]')
def mixing_ratio_from_specific_humidity(specific_humidity):
r"""Calculate the mixing ratio from specific humidity.

Parameters
----------
specific_humidity: pint.Quantity
Specific humidity of air

Returns
-------
pint.Quantity
Mixing ratio

Notes
-----
Formula from [Salby1996]_ pg. 118.

.. math:: w = \frac{q}{1-q}

* :math:w is mixing ratio
* :math:q is the specific humidity

--------
mixing_ratio, specific_humidity_from_mixing_ratio

"""
try:
specific_humidity = specific_humidity.to('dimensionless')
except AttributeError:
pass
return specific_humidity / (1 - specific_humidity)

[docs]@exporter.export
@preprocess_xarray
@check_units('[dimensionless]')
def specific_humidity_from_mixing_ratio(mixing_ratio):
r"""Calculate the specific humidity from the mixing ratio.

Parameters
----------
mixing_ratio: pint.Quantity
mixing ratio

Returns
-------
pint.Quantity
Specific humidity

Notes
-----
Formula from [Salby1996]_ pg. 118.

.. math:: q = \frac{w}{1+w}

* :math:w is mixing ratio
* :math:q is the specific humidity

--------
mixing_ratio, mixing_ratio_from_specific_humidity

"""
try:
mixing_ratio = mixing_ratio.to('dimensionless')
except AttributeError:
pass
return mixing_ratio / (1 + mixing_ratio)

[docs]@exporter.export
@preprocess_xarray
@check_units('[dimensionless]', '[temperature]', '[pressure]')
def relative_humidity_from_specific_humidity(specific_humidity, temperature, pressure):
r"""Calculate the relative humidity from specific humidity, temperature, and pressure.

Parameters
----------
specific_humidity: pint.Quantity
Specific humidity of air
temperature: pint.Quantity
Air temperature
pressure: pint.Quantity
Total atmospheric pressure

Returns
-------
pint.Quantity
Relative humidity

Notes
-----
Formula based on that from [Hobbs1977]_ pg. 74. and [Salby1996]_ pg. 118.

.. math:: RH = \frac{q}{(1-q)w_s}

* :math:RH is relative humidity as a unitless ratio
* :math:q is specific humidity
* :math:w_s is the saturation mixing ratio

--------
relative_humidity_from_mixing_ratio

"""
return (mixing_ratio_from_specific_humidity(specific_humidity) /
saturation_mixing_ratio(pressure, temperature))

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]')
def cape_cin(pressure, temperature, dewpt, parcel_profile):
r"""Calculate CAPE and CIN.

Calculate the convective available potential energy (CAPE) and convective inhibition (CIN)
of a given upper air profile and parcel path. CIN is integrated between the surface and
LFC, CAPE is integrated between the LFC and EL (or top of sounding). Intersection points of
the measured temperature profile and parcel profile are linearly interpolated.

Parameters
----------
pressure : pint.Quantity
The atmospheric pressure level(s) of interest. The first entry should be the starting
point pressure.
temperature : pint.Quantity
The atmospheric temperature corresponding to pressure.
dewpt : pint.Quantity
The atmospheric dew point corresponding to pressure.
parcel_profile : pint.Quantity
The temperature profile of the parcel

Returns
-------
pint.Quantity
Convective available potential energy (CAPE).
pint.Quantity
Convective inhibition (CIN).

Notes
-----

.. math:: \text{CAPE} = -R_d \int_{LFC}^{EL} (T_{parcel} - T_{env}) d\text{ln}(p)

.. math:: \text{CIN} = -R_d \int_{SFC}^{LFC} (T_{parcel} - T_{env}) d\text{ln}(p)

* :math:CAPE Convective available potential energy
* :math:CIN Convective inhibition
* :math:LFC Pressure of the level of free convection
* :math:EL Pressure of the equilibrium level
* :math:SFC Level of the surface or beginning of parcel path
* :math:R_d Gas constant
* :math:g Gravitational acceleration
* :math:T_{parcel} Parcel temperature
* :math:T_{env} Environment temperature
* :math:p Atmospheric pressure

--------
lfc, el

"""
# Calculate LFC limit of integration
lfc_pressure, _ = lfc(pressure, temperature, dewpt,
parcel_temperature_profile=parcel_profile)

# If there is no LFC, no need to proceed.
if np.isnan(lfc_pressure):
return 0 * units('J/kg'), 0 * units('J/kg')
else:
lfc_pressure = lfc_pressure.magnitude

# Calculate the EL limit of integration
el_pressure, _ = el(pressure, temperature, dewpt,
parcel_temperature_profile=parcel_profile)

# No EL and we use the top reading of the sounding.
if np.isnan(el_pressure):
el_pressure = pressure[-1].magnitude
else:
el_pressure = el_pressure.magnitude

# Difference between the parcel path and measured temperature profiles
y = (parcel_profile - temperature).to(units.degK)

# Estimate zero crossings
x, y = _find_append_zero_crossings(np.copy(pressure), y)

# CAPE
# Only use data between the LFC and EL for calculation
p_mask = _less_or_close(x, lfc_pressure) & _greater_or_close(x, el_pressure)
cape = (Rd * (np.trapz(y_clipped, np.log(x_clipped)) * units.degK)).to(units('J/kg'))

# CIN
# Only use data between the surface and LFC for calculation
cin = (Rd * (np.trapz(y_clipped, np.log(x_clipped)) * units.degK)).to(units('J/kg'))

return cape, cin

def _find_append_zero_crossings(x, y):
r"""
Find and interpolate zero crossings.

Estimate the zero crossings of an x,y series and add estimated crossings to series,
returning a sorted array with no duplicate values.

Parameters
----------
x : pint.Quantity
x values of data
y : pint.Quantity
y values of data

Returns
-------
x : pint.Quantity
x values of data
y : pint.Quantity
y values of data

"""
# Find and append crossings to the data
crossings = find_intersections(x[1:], y[1:], np.zeros_like(y[1:]) * y.units)
x = concatenate((x, crossings[0]))
y = concatenate((y, crossings[1]))

# Resort so that data are in order
sort_idx = np.argsort(x)
x = x[sort_idx]
y = y[sort_idx]

# Remove duplicate data points if there are any
keep_idx = np.ediff1d(x, to_end=[1]) > 0
x = x[keep_idx]
y = y[keep_idx]
return x, y

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def most_unstable_parcel(pressure, temperature, dewpoint, heights=None,
bottom=None, depth=300 * units.hPa):
"""
Determine the most unstable parcel in a layer.

Determines the most unstable parcel of air by calculating the equivalent
potential temperature and finding its maximum in the specified layer.

Parameters
----------
pressure: pint.Quantity
Atmospheric pressure profile
temperature: pint.Quantity
Atmospheric temperature profile
dewpoint: pint.Quantity
Atmospheric dewpoint profile
heights: pint.Quantity, optional
Atmospheric height profile. Standard atmosphere assumed when None (the default).
bottom: pint.Quantity, optional
Bottom of the layer to consider for the calculation in pressure or height.
Defaults to using the bottom pressure or height.
depth: pint.Quantity, optional
Depth of the layer to consider for the calculation in pressure or height. Defaults
to 300 hPa.

Returns
-------
pint.Quantity
Pressure, temperature, and dew point of most unstable parcel in the profile.
integer
Index of the most unstable parcel in the given profile

--------
get_layer

"""
p_layer, t_layer, td_layer = get_layer(pressure, temperature, dewpoint, bottom=bottom,
depth=depth, heights=heights, interpolate=False)
theta_e = equivalent_potential_temperature(p_layer, t_layer, td_layer)
max_idx = np.argmax(theta_e)
return p_layer[max_idx], t_layer[max_idx], td_layer[max_idx], max_idx

[docs]@exporter.export
@preprocess_xarray
@check_units('[temperature]', '[pressure]', '[temperature]')
def isentropic_interpolation(theta_levels, pressure, temperature, *args, **kwargs):
r"""Interpolate data in isobaric coordinates to isentropic coordinates.

Parameters
----------
theta_levels : array
One-dimensional array of desired theta surfaces
pressure : array
One-dimensional array of pressure levels
temperature : array
Array of temperature
args : array, optional
Any additional variables will be interpolated to each isentropic level.

Returns
-------
list
List with pressure at each isentropic level, followed by each additional
argument interpolated to isentropic coordinates.

Other Parameters
----------------
axis : int, optional
The axis corresponding to the vertical in the temperature array, defaults to 0.
tmpk_out : bool, optional
If true, will calculate temperature and output as the last item in the output list.
Defaults to False.
max_iters : int, optional
The maximum number of iterations to use in calculation, defaults to 50.
eps : float, optional
The desired absolute error in the calculated value, defaults to 1e-6.
bottom_up_search : bool, optional
Controls whether to search for theta levels bottom-up, or top-down. Defaults to
True, which is bottom-up search.

Notes
-----
Input variable arrays must have the same number of vertical levels as the pressure levels
array. Pressure is calculated on isentropic surfaces by assuming that temperature varies
linearly with the natural log of pressure. Linear interpolation is then used in the
vertical to find the pressure at each isentropic level. Interpolation method from
[Ziv1994]_. Any additional arguments are assumed to vary linearly with temperature and will
be linearly interpolated to the new isentropic levels.

--------
potential_temperature

"""
# iteration function to be used later
# Calculates theta from linearly interpolated temperature and solves for pressure
def _isen_iter(iter_log_p, isentlevs_nd, ka, a, b, pok):
exner = pok * np.exp(-ka * iter_log_p)
t = a * iter_log_p + b
# Newton-Raphson iteration
f = isentlevs_nd - t * exner
fp = exner * (ka * t - a)
return iter_log_p - (f / fp)

# Change when Python 2.7 no longer supported
# Pull out keyword arguments
tmpk_out = kwargs.pop('tmpk_out', False)
max_iters = kwargs.pop('max_iters', 50)
eps = kwargs.pop('eps', 1e-6)
axis = kwargs.pop('axis', 0)
bottom_up_search = kwargs.pop('bottom_up_search', True)

# Get dimensions in temperature
ndim = temperature.ndim

# Convert units
pres = pressure.to('hPa')
temperature = temperature.to('kelvin')

slices = [np.newaxis] * ndim
slices[axis] = slice(None)
slices = tuple(slices)
pres = np.broadcast_to(pres[slices], temperature.shape) * pres.units

# Sort input data
sort_pres = np.argsort(pres.m, axis=axis)
sort_pres = np.swapaxes(np.swapaxes(sort_pres, 0, axis)[::-1], 0, axis)
sorter = broadcast_indices(pres, sort_pres, ndim, axis)
levs = pres[sorter]
tmpk = temperature[sorter]

theta_levels = np.asanyarray(theta_levels.to('kelvin')).reshape(-1)
isentlevels = theta_levels[np.argsort(theta_levels)]

# Make the desired isentropic levels the same shape as temperature
shape = list(temperature.shape)
shape[axis] = isentlevels.size

# exponent to Poisson's Equation, which is imported above
ka = kappa.m_as('dimensionless')

# calculate theta for each point
pres_theta = potential_temperature(levs, tmpk)

# Raise error if input theta level is larger than pres_theta max
if np.max(pres_theta.m) < np.max(theta_levels):
raise ValueError('Input theta level out of data bounds')

# Find log of pressure to implement assumption of linear temperature dependence on
# ln(p)
log_p = np.log(levs.m)

# Calculations for interpolation routine
pok = P0 ** ka

# index values for each point for the pressure level nearest to the desired theta level
above, below, good = find_bounding_indices(pres_theta.m, theta_levels, axis,
from_below=bottom_up_search)

# calculate constants for the interpolation
a = (tmpk.m[above] - tmpk.m[below]) / (log_p[above] - log_p[below])
b = tmpk.m[above] - a * log_p[above]

# calculate first guess for interpolation
isentprs = 0.5 * (log_p[above] + log_p[below])

# Make sure we ignore any nans in the data for solving; checking a is enough since it
# combines log_p and tmpk.
good &= ~np.isnan(a)

# iterative interpolation using scipy.optimize.fixed_point and _isen_iter defined above
log_p_solved = so.fixed_point(_isen_iter, isentprs[good],
args=(isentlevs_nd[good], ka, a[good], b[good], pok.m),
xtol=eps, maxiter=max_iters)

# get back pressure from log p
isentprs[good] = np.exp(log_p_solved)

# Mask out points we know are bad as well as points that are beyond the max pressure
isentprs[~(good & _less_or_close(isentprs, np.max(pres.m)))] = np.nan

# create list for storing output data
ret = [isentprs * units.hPa]

# if tmpk_out = true, calculate temperature and output as last item in list
if tmpk_out:
ret.append((isentlevs_nd / ((P0.m / isentprs) ** ka)) * units.kelvin)

# do an interpolation for each additional argument
if args:
others = interpolate_1d(isentlevels, pres_theta.m, *(arr[sorter] for arr in args),
axis=axis)
if len(args) > 1:
ret.extend(others)
else:
ret.append(others)

return ret

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def surface_based_cape_cin(pressure, temperature, dewpoint):
r"""Calculate surface-based CAPE and CIN.

Calculate the convective available potential energy (CAPE) and convective inhibition (CIN)
of a given upper air profile for a surface-based parcel. CIN is integrated
between the surface and LFC, CAPE is integrated between the LFC and EL (or top of
sounding). Intersection points of the measured temperature profile and parcel profile are
linearly interpolated.

Parameters
----------
pressure : pint.Quantity
Atmospheric pressure profile. The first entry should be the starting
(surface) observation.
temperature : pint.Quantity
Temperature profile
dewpoint : pint.Quantity
Dewpoint profile

Returns
-------
pint.Quantity
Surface based Convective Available Potential Energy (CAPE).
pint.Quantity
Surface based Convective INhibition (CIN).

--------
cape_cin, parcel_profile

"""
p, t, td, profile = parcel_profile_with_lcl(pressure, temperature, dewpoint)
return cape_cin(p, t, td, profile)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def most_unstable_cape_cin(pressure, temperature, dewpoint, **kwargs):
r"""Calculate most unstable CAPE/CIN.

Calculate the convective available potential energy (CAPE) and convective inhibition (CIN)
of a given upper air profile and most unstable parcel path. CIN is integrated between the
surface and LFC, CAPE is integrated between the LFC and EL (or top of sounding).
Intersection points of the measured temperature profile and parcel profile are linearly
interpolated.

Parameters
----------
pressure : pint.Quantity
Pressure profile
temperature : pint.Quantity
Temperature profile
dewpoint : pint.Quantity
Dewpoint profile

Returns
-------
pint.Quantity
Most unstable Convective Available Potential Energy (CAPE).
pint.Quantity
Most unstable Convective INhibition (CIN).

--------
cape_cin, most_unstable_parcel, parcel_profile

"""
_, parcel_temperature, parcel_dewpoint, parcel_idx = most_unstable_parcel(pressure,
temperature,
dewpoint,
**kwargs)
mu_profile = parcel_profile(pressure[parcel_idx:], parcel_temperature, parcel_dewpoint)
return cape_cin(pressure[parcel_idx:], temperature[parcel_idx:],
dewpoint[parcel_idx:], mu_profile)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def mixed_parcel(p, temperature, dewpt, parcel_start_pressure=None,
heights=None, bottom=None, depth=100 * units.hPa, interpolate=True):
r"""Calculate the properties of a parcel mixed from a layer.

Determines the properties of an air parcel that is the result of complete mixing of a
given atmospheric layer.

Parameters
----------
p : pint.Quantity
Atmospheric pressure profile
temperature : pint.Quantity
Atmospheric temperature profile
dewpt : pint.Quantity
Atmospheric dewpoint profile
parcel_start_pressure : pint.Quantity, optional
Pressure at which the mixed parcel should begin (default None)
heights: pint.Quantity, optional
Atmospheric heights corresponding to the given pressures (default None)
bottom : pint.Quantity, optional
The bottom of the layer as a pressure or height above the surface pressure
(default None)
depth : pint.Quantity, optional
The thickness of the layer as a pressure or height above the bottom of the layer
(default 100 hPa)
interpolate : bool, optional
Interpolate the top and bottom points if they are not in the given data

Returns
-------
pint.Quantity, pint.Quantity, pint.Quantity
The pressure, temperature, and dewpoint of the mixed parcel.

"""
# If a parcel starting pressure is not provided, use the surface
if not parcel_start_pressure:
parcel_start_pressure = p[0]

# Calculate the potential temperature and mixing ratio over the layer
theta = potential_temperature(p, temperature)
mixing_ratio = saturation_mixing_ratio(p, dewpt)

# Mix the variables over the layer
mean_theta, mean_mixing_ratio = mixed_layer(p, theta, mixing_ratio, bottom=bottom,
heights=heights, depth=depth,
interpolate=interpolate)

# Convert back to temperature
mean_temperature = (mean_theta / potential_temperature(parcel_start_pressure,
1 * units.kelvin)) * units.kelvin

# Convert back to dewpoint
mean_vapor_pressure = vapor_pressure(parcel_start_pressure, mean_mixing_ratio)
mean_dewpoint = dewpoint(mean_vapor_pressure)

return (parcel_start_pressure, mean_temperature.to(temperature.units),
mean_dewpoint.to(dewpt.units))

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]')
def mixed_layer(p, *args, **kwargs):
r"""Mix variable(s) over a layer, yielding a mass-weighted average.

This function will integrate a data variable with respect to pressure and determine the
average value using the mean value theorem.

Parameters
----------
p : array-like
Atmospheric pressure profile
datavar : array-like
Atmospheric variable measured at the given pressures
heights: array-like, optional
Atmospheric heights corresponding to the given pressures (default None)
bottom : pint.Quantity, optional
The bottom of the layer as a pressure or height above the surface pressure
(default None)
depth : pint.Quantity, optional
The thickness of the layer as a pressure or height above the bottom of the layer
(default 100 hPa)
interpolate : bool, optional
Interpolate the top and bottom points if they are not in the given data

Returns
-------
pint.Quantity
The mixed value of the data variable.

"""
# Pull out keyword arguments, remove when we drop Python 2.7
heights = kwargs.pop('heights', None)
bottom = kwargs.pop('bottom', None)
depth = kwargs.pop('depth', 100 * units.hPa)
interpolate = kwargs.pop('interpolate', True)

layer = get_layer(p, *args, heights=heights, bottom=bottom,
depth=depth, interpolate=interpolate)
p_layer = layer[0]
datavars_layer = layer[1:]

ret = []
for datavar_layer in datavars_layer:
actual_depth = abs(p_layer[0] - p_layer[-1])
ret.append((-1. / actual_depth.m) * np.trapz(datavar_layer, p_layer) *
datavar_layer.units)
return ret

[docs]@exporter.export
@preprocess_xarray
@check_units('[length]', '[temperature]')
def dry_static_energy(heights, temperature):
r"""Calculate the dry static energy of parcels.

This function will calculate the dry static energy following the first two terms of
equation 3.72 in [Hobbs2006]_.

Notes
-----
.. math::\text{dry static energy} = c_{pd} * T + gz

* :math:T is temperature
* :math:z is height

Parameters
----------
heights : array-like
Atmospheric height
temperature : array-like
Atmospheric temperature

Returns
-------
pint.Quantity
The dry static energy

"""
return (g * heights + Cp_d * temperature).to('kJ/kg')

[docs]@exporter.export
@preprocess_xarray
@check_units('[length]', '[temperature]', '[dimensionless]')
def moist_static_energy(heights, temperature, specific_humidity):
r"""Calculate the moist static energy of parcels.

This function will calculate the moist static energy following
equation 3.72 in [Hobbs2006]_.
Notes
-----
.. math::\text{moist static energy} = c_{pd} * T + gz + L_v q

* :math:T is temperature
* :math:z is height
* :math:q is specific humidity

Parameters
----------
heights : array-like
Atmospheric height
temperature : array-like
Atmospheric temperature
specific_humidity : array-like
Atmospheric specific humidity

Returns
-------
pint.Quantity
The moist static energy

"""
return (dry_static_energy(heights, temperature) +
Lv * specific_humidity.to('dimensionless')).to('kJ/kg')

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def thickness_hydrostatic(pressure, temperature, **kwargs):
r"""Calculate the thickness of a layer via the hypsometric equation.

This thickness calculation uses the pressure and temperature profiles (and optionally
mixing ratio) via the hypsometric equation with virtual temperature adjustment

.. math:: Z_2 - Z_1 = -\frac{R_d}{g} \int_{p_1}^{p_2} T_v d\ln p,

which is based off of Equation 3.24 in [Hobbs2006]_.

This assumes a hydrostatic atmosphere.

Layer bottom and depth specified in pressure.

Parameters
----------
pressure : pint.Quantity
Atmospheric pressure profile
temperature : pint.Quantity
Atmospheric temperature profile
mixing : pint.Quantity, optional
Profile of dimensionless mass mixing ratio. If none is given, virtual temperature
is simply set to be the given temperature.
molecular_weight_ratio : pint.Quantity or float, optional
The ratio of the molecular weight of the constituent gas to that assumed
for air. Defaults to the ratio for water vapor to dry air.
(:math:\epsilon\approx0.622).
bottom : pint.Quantity, optional
The bottom of the layer in pressure. Defaults to the first observation.
depth : pint.Quantity, optional
The depth of the layer in hPa. Defaults to the full profile if bottom is not given,
and 100 hPa if bottom is given.

Returns
-------
pint.Quantity
The thickness of the layer in meters.

--------
thickness_hydrostatic_from_relative_humidity, pressure_to_height_std, virtual_temperature

"""
mixing = kwargs.pop('mixing', None)
molecular_weight_ratio = kwargs.pop('molecular_weight_ratio', epsilon)
bottom = kwargs.pop('bottom', None)
depth = kwargs.pop('depth', None)

# Get the data for the layer, conditional upon bottom/depth being specified and mixing
# ratio being given
if bottom is None and depth is None:
if mixing is None:
layer_p, layer_virttemp = pressure, temperature
else:
layer_p = pressure
layer_virttemp = virtual_temperature(temperature, mixing, molecular_weight_ratio)
else:
if mixing is None:
layer_p, layer_virttemp = get_layer(pressure, temperature, bottom=bottom,
depth=depth)
else:
layer_p, layer_temp, layer_w = get_layer(pressure, temperature, mixing,
bottom=bottom, depth=depth)
layer_virttemp = virtual_temperature(layer_temp, layer_w, molecular_weight_ratio)

# Take the integral (with unit handling) and return the result in meters
return (- Rd / g * np.trapz(layer_virttemp.to('K'), x=np.log(layer_p / units.hPa)) *
units.K).to('m')

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def thickness_hydrostatic_from_relative_humidity(pressure, temperature, relative_humidity,
**kwargs):
r"""Calculate the thickness of a layer given pressure, temperature and relative humidity.

Similar to thickness_hydrostatic, this thickness calculation uses the pressure,
temperature, and relative humidity profiles via the hypsometric equation with virtual

.. math:: Z_2 - Z_1 = -\frac{R_d}{g} \int_{p_1}^{p_2} T_v d\ln p,

which is based off of Equation 3.24 in [Hobbs2006]_. Virtual temperature is calculated
from the profiles of temperature and relative humidity.

This assumes a hydrostatic atmosphere.

Layer bottom and depth specified in pressure.

Parameters
----------
pressure : pint.Quantity
Atmospheric pressure profile
temperature : pint.Quantity
Atmospheric temperature profile
relative_humidity : pint.Quantity
Atmospheric relative humidity profile. The relative humidity is expressed as a
unitless ratio in the range [0, 1]. Can also pass a percentage if proper units are
attached.
bottom : pint.Quantity, optional
The bottom of the layer in pressure. Defaults to the first observation.
depth : pint.Quantity, optional
The depth of the layer in hPa. Defaults to the full profile if bottom is not given,
and 100 hPa if bottom is given.

Returns
-------
pint.Quantity
The thickness of the layer in meters.

--------
thickness_hydrostatic, pressure_to_height_std, virtual_temperature,
mixing_ratio_from_relative_humidity

"""
bottom = kwargs.pop('bottom', None)
depth = kwargs.pop('depth', None)
mixing = mixing_ratio_from_relative_humidity(relative_humidity, temperature, pressure)

return thickness_hydrostatic(pressure, temperature, mixing=mixing, bottom=bottom,
depth=depth)

[docs]@exporter.export
@preprocess_xarray
@check_units('[length]', '[temperature]')
def brunt_vaisala_frequency_squared(heights, potential_temperature, axis=0):
r"""Calculate the square of the Brunt-Vaisala frequency.

Brunt-Vaisala frequency squared (a measure of atmospheric stability) is given by the
formula:

.. math:: N^2 = \frac{g}{\theta} \frac{d\theta}{dz}

This formula is based off of Equations 3.75 and 3.77 in [Hobbs2006]_.

Parameters
----------
heights : array-like
One-dimensional profile of atmospheric height
potential_temperature : array-like
Atmospheric potential temperature
axis : int, optional
The axis corresponding to vertical in the potential temperature array, defaults to 0.

Returns
-------
array-like
The square of the Brunt-Vaisala frequency.

--------
brunt_vaisala_frequency, brunt_vaisala_period, potential_temperature

"""
# Ensure validity of temperature units
potential_temperature = potential_temperature.to('K')

# Calculate and return the square of Brunt-Vaisala frequency
return g / potential_temperature * first_derivative(potential_temperature, x=heights,
axis=axis)

[docs]@exporter.export
@preprocess_xarray
@check_units('[length]', '[temperature]')
def brunt_vaisala_frequency(heights, potential_temperature, axis=0):
r"""Calculate the Brunt-Vaisala frequency.

This function will calculate the Brunt-Vaisala frequency as follows:

.. math:: N = \left( \frac{g}{\theta} \frac{d\theta}{dz} \right)^\frac{1}{2}

This formula based off of Equations 3.75 and 3.77 in [Hobbs2006]_.

This function is a wrapper for brunt_vaisala_frequency_squared that filters out negative
(unstable) quanties and takes the square root.

Parameters
----------
heights : array-like
One-dimensional profile of atmospheric height
potential_temperature : array-like
Atmospheric potential temperature
axis : int, optional
The axis corresponding to vertical in the potential temperature array, defaults to 0.

Returns
-------
array-like
Brunt-Vaisala frequency.

--------
brunt_vaisala_frequency_squared, brunt_vaisala_period, potential_temperature

"""
bv_freq_squared = brunt_vaisala_frequency_squared(heights, potential_temperature,
axis=axis)
bv_freq_squared[bv_freq_squared.magnitude < 0] = np.nan

return np.sqrt(bv_freq_squared)

[docs]@exporter.export
@preprocess_xarray
@check_units('[length]', '[temperature]')
def brunt_vaisala_period(heights, potential_temperature, axis=0):
r"""Calculate the Brunt-Vaisala period.

This function is a helper function for brunt_vaisala_frequency that calculates the
period of oscilation as in Exercise 3.13 of [Hobbs2006]_:

.. math:: \tau = \frac{2\pi}{N}

Returns NaN when :math:N^2 > 0.

Parameters
----------
heights : array-like
One-dimensional profile of atmospheric height
potential_temperature : array-like
Atmospheric potential temperature
axis : int, optional
The axis corresponding to vertical in the potential temperature array, defaults to 0.

Returns
-------
array-like
Brunt-Vaisala period.

--------
brunt_vaisala_frequency, brunt_vaisala_frequency_squared, potential_temperature

"""
bv_freq_squared = brunt_vaisala_frequency_squared(heights, potential_temperature,
axis=axis)
bv_freq_squared[bv_freq_squared.magnitude <= 0] = np.nan

return 2 * np.pi / np.sqrt(bv_freq_squared)

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]', '[temperature]')
def wet_bulb_temperature(pressure, temperature, dewpoint):
"""Calculate the wet-bulb temperature using Normand's rule.

This function calculates the wet-bulb temperature using the Normand method. The LCL is
computed, and that parcel brought down to the starting pressure along a moist adiabat.
The Normand method (and others) are described and compared by [Knox2017]_.

Parameters
----------
pressure : pint.Quantity
Initial atmospheric pressure
temperature : pint.Quantity
Initial atmospheric temperature
dewpoint : pint.Quantity
Initial atmospheric dewpoint

Returns
-------
array-like
Wet-bulb temperature

--------
lcl, moist_lapse

"""
if not hasattr(pressure, 'shape'):
pressure = atleast_1d(pressure)
temperature = atleast_1d(temperature)
dewpoint = atleast_1d(dewpoint)

it = np.nditer([pressure, temperature, dewpoint, None],
op_dtypes=['float', 'float', 'float', 'float'],
flags=['buffered'])

for press, temp, dewp, ret in it:
press = press * pressure.units
temp = temp * temperature.units
dewp = dewp * dewpoint.units
lcl_pressure, lcl_temperature = lcl(press, temp, dewp)
lcl_temperature)

# If we started with a scalar, return a scalar
if it.operands[3].size == 1:

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]', '[temperature]')
def static_stability(pressure, temperature, axis=0):
r"""Calculate the static stability within a vertical profile.

.. math:: \sigma = -\frac{RT}{p} \frac{\partial \ln \theta}{\partial p}

This formuala is based on equation 4.3.6 in [Bluestein1992]_.

Parameters
----------
pressure : array-like
Profile of atmospheric pressure
temperature : array-like
Profile of temperature
axis : int, optional
The axis corresponding to vertical in the pressure and temperature arrays, defaults
to 0.

Returns
-------
array-like
The profile of static stability.

"""
theta = potential_temperature(pressure, temperature)

return - Rd * temperature / pressure * first_derivative(np.log(theta / units.K),
x=pressure, axis=axis)

[docs]@exporter.export
@preprocess_xarray
@check_units('[dimensionless]', '[temperature]', '[pressure]')
def dewpoint_from_specific_humidity(specific_humidity, temperature, pressure):
r"""Calculate the dewpoint from specific humidity, temperature, and pressure.

Parameters
----------
specific_humidity: pint.Quantity
Specific humidity of air
temperature: pint.Quantity
Air temperature
pressure: pint.Quantity
Total atmospheric pressure

Returns
-------
pint.Quantity
Dewpoint temperature

--------
relative_humidity_from_mixing_ratio, dewpoint_rh

"""
return dewpoint_rh(temperature, relative_humidity_from_specific_humidity(specific_humidity,
temperature,
pressure))

[docs]@exporter.export
@preprocess_xarray
@check_units('[length]/[time]', '[pressure]', '[temperature]')
def vertical_velocity_pressure(w, pressure, temperature, mixing=0):
r"""Calculate omega from w assuming hydrostatic conditions.

This function converts vertical velocity with respect to height
:math:\left(w = \frac{Dz}{Dt}\right) to that
with respect to pressure :math:\left(\omega = \frac{Dp}{Dt}\right)
assuming hydrostatic conditions on the synoptic scale.
By Equation 7.33 in [Hobbs2006]_,

.. math: \omega \simeq -\rho g w

Density (:math:\rho) is calculated using the :func:density function,
from the given pressure and temperature. If mixing is given, the virtual
temperature correction is used, otherwise, dry air is assumed.

Parameters
----------
w: pint.Quantity
Vertical velocity in terms of height
pressure: pint.Quantity
Total atmospheric pressure
temperature: pint.Quantity
Air temperature
mixing: pint.Quantity, optional
Mixing ratio of air

Returns
-------
pint.Quantity
Vertical velocity in terms of pressure (in Pascals / second)

--------
density, vertical_velocity

"""
rho = density(pressure, temperature, mixing)
return (- g * rho * w).to('Pa/s')

[docs]@exporter.export
@preprocess_xarray
@check_units('[pressure]/[time]', '[pressure]', '[temperature]')
def vertical_velocity(omega, pressure, temperature, mixing=0):
r"""Calculate w from omega assuming hydrostatic conditions.

This function converts vertical velocity with respect to pressure
:math:\left(\omega = \frac{Dp}{Dt}\right) to that with respect to height
:math:\left(w = \frac{Dz}{Dt}\right) assuming hydrostatic conditions on
the synoptic scale. By Equation 7.33 in [Hobbs2006]_,

.. math: \omega \simeq -\rho g w

so that

.. math w \simeq \frac{- \omega}{\rho g}

Density (:math:\rho) is calculated using the :func:density function,
from the given pressure and temperature. If mixing is given, the virtual
temperature correction is used, otherwise, dry air is assumed.

Parameters
----------
omega: pint.Quantity
Vertical velocity in terms of pressure
pressure: pint.Quantity
Total atmospheric pressure
temperature: pint.Quantity
Air temperature
mixing: pint.Quantity, optional
Mixing ratio of air

Returns
-------
pint.Quantity
Vertical velocity in terms of height (in meters / second)

--------
density, vertical_velocity_pressure

"""
rho = density(pressure, temperature, mixing)
return (omega / (- g * rho)).to('m/s')