NDBC Latest Data Request

This example shows how to use siphon’s simplewebswervice support query the most recent observations from all of the NDBC buoys at once.

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt

from siphon.simplewebservice.ndbc import NDBC

Get a pandas data frame of all of the observations

station latitude longitude wind_direction wind_speed wind_gust wave_height dominant_wave_period average_wave_period dominant_wave_direction pressure 3hr_pressure_tendency air_temperature water_temperature dewpoint visibility water_level_above_mean time
0 15002 0.00 -10.00 171.0 9.0 NaN NaN NaN NaN NaN 1012.4 NaN 25.2 25.6 NaN NaN NaN 2025-10-31 14:00:00+00:00
1 22101 37.24 126.02 330.0 7.0 NaN 0.0 3.0 NaN NaN NaN NaN 14.2 19.8 NaN NaN NaN 2025-10-31 15:00:00+00:00
2 22102 34.79 125.78 300.0 8.0 NaN 1.0 4.0 NaN NaN NaN NaN 15.4 18.3 NaN NaN NaN 2025-10-31 15:00:00+00:00
3 22103 34.00 127.50 320.0 9.0 NaN 0.5 4.0 NaN NaN NaN NaN 18.0 22.4 NaN NaN NaN 2025-10-31 15:00:00+00:00
4 22104 34.77 128.90 330.0 4.0 NaN 0.5 5.0 NaN NaN NaN NaN 17.8 22.1 NaN NaN NaN 2025-10-31 15:00:00+00:00


In this case I’m going to drop buoys that do not have water temperature measurements.

df.dropna(subset=['water_temperature'], inplace=True)

Let’s make a simple plot of the buoy positions and color by water temperature

proj = ccrs.LambertConformal(central_latitude=45., central_longitude=-100.,
                             standard_parallels=[30, 60])

fig = plt.figure(figsize=(17., 11.))
ax = plt.axes(projection=proj)
ax.coastlines('50m', edgecolor='black')
ax.add_feature(cfeature.OCEAN.with_scale('50m'))
ax.add_feature(cfeature.LAND.with_scale('50m'))
ax.set_extent([-85, -75, 25, 30], ccrs.PlateCarree())

ax.scatter(df['longitude'], df['latitude'], c=df['water_temperature'],
           transform=ccrs.PlateCarree())

plt.show()
latest request

Total running time of the script: (0 minutes 6.094 seconds)

Gallery generated by Sphinx-Gallery