Source code for metpy.plots._util

# Copyright (c) 2015,2017,2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Utilities for use in making plots."""

from datetime import datetime

from matplotlib.collections import LineCollection
import matplotlib.patheffects as mpatheffects
from matplotlib.pyplot import imread
import numpy as np

from ..units import concatenate


[docs]def add_timestamp(ax, time=None, x=0.99, y=-0.04, ha='right', high_contrast=False, pretext='Created: ', time_format='%Y-%m-%dT%H:%M:%SZ', **kwargs): """Add a timestamp to a plot. Adds a timestamp to a plot, defaulting to the time of plot creation in ISO format. Parameters ---------- ax : `matplotlib.axes.Axes` The `Axes` instance used for plotting time : `datetime.datetime` Specific time to be plotted - datetime.utcnow will be use if not specified x : float Relative x position on the axes of the timestamp y : float Relative y position on the axes of the timestamp ha : str Horizontal alignment of the time stamp string high_contrast : bool Outline text for increased contrast pretext : str Text to appear before the timestamp, optional. Defaults to 'Created: ' time_format : str Display format of time, optional. Defaults to ISO format. Returns ------- `matplotlib.text.Text` The `matplotlib.text.Text` instance created """ if high_contrast: text_args = {'color': 'white', 'path_effects': [mpatheffects.withStroke(linewidth=2, foreground='black')]} else: text_args = {} text_args.update(**kwargs) if not time: time = datetime.utcnow() timestr = pretext + time.strftime(time_format) return ax.text(x, y, timestr, ha=ha, transform=ax.transAxes, **text_args)
def _add_logo(fig, x=10, y=25, zorder=100, which='metpy', size='small', **kwargs): """Add the MetPy or Unidata logo to a figure. Adds an image to the figure. Parameters ---------- fig : `matplotlib.figure` The `figure` instance used for plotting x : int x position padding in pixels y : float y position padding in pixels zorder : int The zorder of the logo which : str Which logo to plot 'metpy' or 'unidata' size : str Size of logo to be used. Can be 'small' for 75 px square or 'large' for 150 px square. Returns ------- `matplotlib.image.FigureImage` The `matplotlib.image.FigureImage` instance created """ try: from importlib.resources import files as importlib_resources_files except ImportError: # Can remove when we require Python > 3.8 from importlib_resources import files as importlib_resources_files fname_suffix = {'small': '_75x75.png', 'large': '_150x150.png'} fname_prefix = {'unidata': 'unidata', 'metpy': 'metpy'} try: fname = fname_prefix[which] + fname_suffix[size] except KeyError: raise ValueError('Unknown logo size or selection') from None with (importlib_resources_files('metpy.plots') / '_static' / fname).open('rb') as fobj: logo = imread(fobj) return fig.figimage(logo, x, y, zorder=zorder, **kwargs) # Not part of public API def colored_line(x, y, c, **kwargs): """Create a multi-colored line. Takes a set of points and turns them into a collection of lines colored by another array. Parameters ---------- x : array-like x-axis coordinates y : array-like y-axis coordinates c : array-like values used for color-mapping kwargs : dict Other keyword arguments passed to :class:`matplotlib.collections.LineCollection` Returns ------- The created :class:`matplotlib.collections.LineCollection` instance. """ # Mask out any NaN values nan_mask = ~(np.isnan(x) | np.isnan(y) | np.isnan(c)) x = x[nan_mask] y = y[nan_mask] c = c[nan_mask] # Paste values end to end points = concatenate([x, y]) # Exploit numpy's strides to present a view of these points without copying. # Dimensions are (segment, start/end, x/y). Since x and y are concatenated back to back, # moving between segments only moves one item; moving start to end is only an item; # The move between x any moves from one half of the array to the other num_pts = points.size // 2 final_shape = (num_pts - 1, 2, 2) final_strides = (points.itemsize, points.itemsize, num_pts * points.itemsize) segments = np.lib.stride_tricks.as_strided(points, shape=final_shape, strides=final_strides) # Create a LineCollection from the segments and set it to colormap based on c lc = LineCollection(segments, **kwargs) lc.set_array(c) return lc
[docs]def convert_gempak_color(c, style='psc'): """Convert GEMPAK color numbers into corresponding Matplotlib colors. Takes a sequence of GEMPAK color numbers and turns them into equivalent Matplotlib colors. Various GEMPAK quirks are respected, such as treating negative values as equivalent to 0. Parameters ---------- c : int or sequence of ints GEMPAK color number(s) style : str, optional The GEMPAK 'device' to use to interpret color numbers. May be 'psc' (the default; best for a white background) or 'xw' (best for a black background). Returns ------- List of strings of Matplotlib colors, or a single string if only one color requested. """ def normalize(x): """Transform input x to an int in range 0 to 31 consistent with GEMPAK color quirks.""" x = int(x) if x < 0 or x == 101: x = 0 else: x = x % 32 return x # Define GEMPAK colors (Matplotlib doesn't appear to like numbered variants) cols = ['white', # 0/32 'black', # 1 'red', # 2 'green', # 3 'blue', # 4 'yellow', # 5 'cyan', # 6 'magenta', # 7 '#CD6839', # 8 (sienna3) '#FF8247', # 9 (sienna1) '#FFA54F', # 10 (tan1) '#FFAEB9', # 11 (LightPink1) '#FF6A6A', # 12 (IndianRed1) '#EE2C2C', # 13 (firebrick2) '#8B0000', # 14 (red4) '#CD0000', # 15 (red3) '#EE4000', # 16 (OrangeRed2) '#FF7F00', # 17 (DarkOrange1) '#CD8500', # 18 (orange3) 'gold', # 19 '#EEEE00', # 20 (yellow2) 'chartreuse', # 21 '#00CD00', # 22 (green3) '#008B00', # 23 (green4) '#104E8B', # 24 (DodgerBlue4) 'DodgerBlue', # 25 '#00B2EE', # 26 (DeepSkyBlue2) '#00EEEE', # 27 (cyan2) '#8968CD', # 28 (MediumPurple3) '#912CEE', # 29 (purple2) '#8B008B', # 30 (magenta4) 'bisque'] # 31 if style != 'psc': if style == 'xw': cols[0] = 'black' cols[1] = 'bisque' cols[31] = 'white' else: raise ValueError('Unknown style parameter') try: c_list = list(c) res = [cols[normalize(x)] for x in c_list] except TypeError: res = cols[normalize(c)] return res