Source code for metpy.interpolate.slices

# Copyright (c) 2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Tools for interpolating to a vertical slice/cross section through data."""

import numpy as np
import xarray as xr

from ..package_tools import Exporter
from ..units import units
from ..xarray import check_axis

exporter = Exporter(globals())


[docs]@exporter.export def interpolate_to_slice(data, points, interp_type='linear'): r"""Obtain an interpolated slice through data using xarray. Utilizing the interpolation functionality in `xarray`, this function takes a slice the given data (currently only regular grids are supported), which is given as an `xarray.DataArray` so that we can utilize its coordinate metadata. Parameters ---------- data: `xarray.DataArray` or `xarray.Dataset` Three- (or higher) dimensional field(s) to interpolate. The DataArray (or each DataArray in the Dataset) must have been parsed by MetPy and include both an x and y coordinate dimension. points: (N, 2) array_like A list of x, y points in the data projection at which to interpolate the data interp_type: str, optional The interpolation method, either 'linear' or 'nearest' (see `xarray.DataArray.interp()` for details). Defaults to 'linear'. Returns ------- `xarray.DataArray` or `xarray.Dataset` The interpolated slice of data, with new index dimension of size N. See Also -------- cross_section """ try: x, y = data.metpy.coordinates('x', 'y') except AttributeError: raise ValueError('Required coordinate information not available. Verify that ' 'your data has been parsed by MetPy with proper x and y ' 'dimension coordinates.') data_sliced = data.interp({ x.name: xr.DataArray(points[:, 0], dims='index', attrs=x.attrs), y.name: xr.DataArray(points[:, 1], dims='index', attrs=y.attrs) }, method=interp_type) data_sliced.coords['index'] = range(len(points)) # Bug in xarray: interp strips units if ( isinstance(data.data, units.Quantity) and not isinstance(data_sliced.data, units.Quantity) ): data_sliced.data = units.Quantity(data_sliced.data, data.data.units) return data_sliced
[docs]@exporter.export def geodesic(crs, start, end, steps): r"""Construct a geodesic path between two points. This function acts as a wrapper for the geodesic construction available in `pyproj`. Parameters ---------- crs: `pyproj.CRS` PyProj Coordinate Reference System to use for the output start: (2, ) array_like A latitude-longitude pair designating the start point of the geodesic (units are degrees north and degrees east). end: (2, ) array_like A latitude-longitude pair designating the end point of the geodesic (units are degrees north and degrees east). steps: int, optional The number of points along the geodesic between the start and the end point (including the end points). Returns ------- `numpy.ndarray` The list of x, y points in the given CRS of length `steps` along the geodesic. See Also -------- cross_section """ from pyproj import Proj g = crs.get_geod() p = Proj(crs) # Geod.npts only gives points *in between* the start and end, and we want to include # the endpoints. geodesic = np.concatenate([ np.array(start[::-1])[None], np.array(g.npts(start[1], start[0], end[1], end[0], steps - 2)), np.array(end[::-1])[None] ]).transpose() points = np.stack(p(geodesic[0], geodesic[1], inverse=False, radians=False), axis=-1) return points
[docs]@exporter.export def cross_section(data, start, end, steps=100, interp_type='linear'): r"""Obtain an interpolated cross-sectional slice through gridded data. Utilizing the interpolation functionality in `xarray`, this function takes a vertical cross-sectional slice along a geodesic through the given data on a regular grid, which is given as an `xarray.DataArray` so that we can utilize its coordinate and projection metadata. Parameters ---------- data: `xarray.DataArray` or `xarray.Dataset` Three- (or higher) dimensional field(s) to interpolate. The DataArray (or each DataArray in the Dataset) must have been parsed by MetPy and include both an x and y coordinate dimension and the added `crs` coordinate. start: (2, ) array_like A latitude-longitude pair designating the start point of the cross section (units are degrees north and degrees east). end: (2, ) array_like A latitude-longitude pair designating the end point of the cross section (units are degrees north and degrees east). steps: int, optional The number of points along the geodesic between the start and the end point (including the end points) to use in the cross section. Defaults to 100. interp_type: str, optional The interpolation method, either 'linear' or 'nearest' (see `xarray.DataArray.interp()` for details). Defaults to 'linear'. Returns ------- `xarray.DataArray` or `xarray.Dataset` The interpolated cross section, with new index dimension along the cross-section. See Also -------- interpolate_to_slice, geodesic """ if isinstance(data, xr.Dataset): # Recursively apply to dataset return data.map(cross_section, True, (start, end), steps=steps, interp_type=interp_type) elif data.ndim == 0: # This has no dimensions, so it is likely a projection variable. In any case, there # are no data here to take the cross section with. Therefore, do nothing. return data else: # Get the projection and coordinates try: crs_data = data.metpy.pyproj_crs x = data.metpy.x except AttributeError: raise ValueError('Data missing required coordinate information. Verify that ' 'your data have been parsed by MetPy with proper x and y ' 'dimension coordinates and added crs coordinate of the ' 'correct projection for each variable.') # Get the geodesic points_cross = geodesic(crs_data, start, end, steps) # Patch points_cross to match given longitude range, whether [0, 360) or (-180, 180] if check_axis(x, 'longitude') and (x > 180).any(): points_cross[points_cross[:, 0] < 0, 0] += 360. # Return the interpolated data return interpolate_to_slice(data, points_cross, interp_type=interp_type)