Source code for metpy.interpolate.grid

# Copyright (c) 2018,2019 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Tools and calculations for interpolating specifically to a grid."""

import numpy as np

from .points import (interpolate_to_points, inverse_distance_to_points,
                     natural_neighbor_to_points)
from ..package_tools import Exporter
from ..pandas import preprocess_pandas

exporter = Exporter(globals())


def generate_grid(horiz_dim, bbox):
    r"""Generate a meshgrid based on bounding box and x & y resolution.

    Parameters
    ----------
    horiz_dim: integer
        Horizontal resolution
    bbox: dictionary
        Dictionary containing coordinates for corners of study area.

    Returns
    -------
    grid_x: (X, Y) ndarray
        X dimension meshgrid defined by given bounding box
    grid_y: (X, Y) ndarray
        Y dimension meshgrid defined by given bounding box

    """
    x_steps, y_steps = get_xy_steps(bbox, horiz_dim)

    grid_x = np.linspace(bbox['west'], bbox['east'], x_steps)
    grid_y = np.linspace(bbox['south'], bbox['north'], y_steps)

    gx, gy = np.meshgrid(grid_x, grid_y)

    return gx, gy


def generate_grid_coords(gx, gy):
    r"""Calculate x,y coordinates of each grid cell.

    Parameters
    ----------
    gx: numeric
        x coordinates in meshgrid
    gy: numeric
        y coordinates in meshgrid

    Returns
    -------
    (X, Y) ndarray
        List of coordinates in meshgrid

    """
    return np.stack([gx.ravel(), gy.ravel()], axis=1)


def get_xy_range(bbox):
    r"""Return x and y ranges in meters based on bounding box.

    bbox: dictionary
        dictionary containing coordinates for corners of study area

    Returns
    -------
    x_range: float
        Range in meters in x dimension.
    y_range: float
        Range in meters in y dimension.

    """
    x_range = bbox['east'] - bbox['west']
    y_range = bbox['north'] - bbox['south']

    return x_range, y_range


def get_xy_steps(bbox, h_dim):
    r"""Return meshgrid spacing based on bounding box.

    bbox: dictionary
        Dictionary containing coordinates for corners of study area.
    h_dim: integer
        Horizontal resolution in meters.

    Returns
    -------
    x_steps, (X, ) ndarray
        Number of grids in x dimension.
    y_steps: (Y, ) ndarray
        Number of grids in y dimension.

    """
    x_range, y_range = get_xy_range(bbox)

    x_steps = np.ceil(x_range / h_dim)
    y_steps = np.ceil(y_range / h_dim)

    return int(x_steps), int(y_steps)


def get_boundary_coords(x, y, spatial_pad=0):
    r"""Return bounding box based on given x and y coordinates assuming northern hemisphere.

    x: numeric
        x coordinates.
    y: numeric
        y coordinates.
    spatial_pad: numeric
        Number of meters to add to the x and y dimensions to reduce
        edge effects.

    Returns
    -------
    bbox: dictionary
        dictionary containing coordinates for corners of study area

    """
    west = np.min(x) - spatial_pad
    east = np.max(x) + spatial_pad
    north = np.max(y) + spatial_pad
    south = np.min(y) - spatial_pad

    return {'west': west, 'south': south, 'east': east, 'north': north}


[docs]@exporter.export def natural_neighbor_to_grid(xp, yp, variable, grid_x, grid_y): r"""Generate a natural neighbor interpolation of the given points to a regular grid. This assigns values to the given grid using the Liang and Hale [Liang2010]_. approach. Parameters ---------- xp: (N, ) ndarray x-coordinates of observations yp: (N, ) ndarray y-coordinates of observations variable: (N, ) ndarray observation values associated with (xp, yp) pairs. IE, variable[i] is a unique observation at (xp[i], yp[i]) grid_x: (M, 2) ndarray Meshgrid associated with x dimension grid_y: (M, 2) ndarray Meshgrid associated with y dimension Returns ------- img: (M, N) ndarray Interpolated values on a 2-dimensional grid See Also -------- natural_neighbor_to_points """ # Handle grid-to-points conversion, and use function from `interpolation` points_obs = list(zip(xp, yp)) points_grid = generate_grid_coords(grid_x, grid_y) img = natural_neighbor_to_points(points_obs, variable, points_grid) return img.reshape(grid_x.shape)
[docs]@exporter.export def inverse_distance_to_grid(xp, yp, variable, grid_x, grid_y, r, gamma=None, kappa=None, min_neighbors=3, kind='cressman'): r"""Generate an inverse distance interpolation of the given points to a regular grid. Values are assigned to the given grid using inverse distance weighting based on either [Cressman1959]_ or [Barnes1964]_. The Barnes implementation used here based on [Koch1983]_. Parameters ---------- xp: (N, ) ndarray x-coordinates of observations. yp: (N, ) ndarray y-coordinates of observations. variable: (N, ) ndarray observation values associated with (xp, yp) pairs. IE, variable[i] is a unique observation at (xp[i], yp[i]). grid_x: (M, 2) ndarray Meshgrid associated with x dimension. grid_y: (M, 2) ndarray Meshgrid associated with y dimension. r: float Radius from grid center, within which observations are considered and weighted. gamma: float Adjustable smoothing parameter for the barnes interpolation. Default None. kappa: float Response parameter for barnes interpolation. Default None. min_neighbors: int Minimum number of neighbors needed to perform barnes or cressman interpolation for a point. Default is 3. kind: str Specify what inverse distance weighting interpolation to use. Options: 'cressman' or 'barnes'. Default 'cressman' Returns ------- img: (M, N) ndarray Interpolated values on a 2-dimensional grid See Also -------- inverse_distance_to_points """ # Handle grid-to-points conversion, and use function from `interpolation` points_obs = list(zip(xp, yp)) points_grid = generate_grid_coords(grid_x, grid_y) img = inverse_distance_to_points(points_obs, variable, points_grid, r, gamma=gamma, kappa=kappa, min_neighbors=min_neighbors, kind=kind) return img.reshape(grid_x.shape)
[docs]@exporter.export @preprocess_pandas def interpolate_to_grid(x, y, z, interp_type='linear', hres=50000, minimum_neighbors=3, gamma=0.25, kappa_star=5.052, search_radius=None, rbf_func='linear', rbf_smooth=0, boundary_coords=None): r"""Interpolate given (x,y), observation (z) pairs to a grid based on given parameters. Parameters ---------- x: array_like x coordinate, can have units of linear distance or degrees y: array_like y coordinate, can have units of linear distance or degrees z: array_like observation value interp_type: str What type of interpolation to use. Available options include: 1) "linear", "nearest", "cubic", or "rbf" from `scipy.interpolate`. 2) "natural_neighbor", "barnes", or "cressman" from `metpy.interpolate`. Default "linear". hres: float The horizontal resolution of the generated grid, given in the same units as the x and y parameters. Default 50000. minimum_neighbors: int Minimum number of neighbors needed to perform barnes or cressman interpolation for a point. Default is 3. gamma: float Adjustable smoothing parameter for the barnes interpolation. Default 0.25. kappa_star: float Response parameter for barnes interpolation, specified nondimensionally in terms of the Nyquist. Default 5.052 search_radius: float A search radius to use for the barnes and cressman interpolation schemes. If search_radius is not specified, it will default to the average spacing of observations. rbf_func: str Specifies which function to use for Rbf interpolation. Options include: 'multiquadric', 'inverse', 'gaussian', 'linear', 'cubic', 'quintic', and 'thin_plate'. Defualt 'linear'. See `scipy.interpolate.Rbf` for more information. rbf_smooth: float Smoothing value applied to rbf interpolation. Higher values result in more smoothing. boundary_coords: dictionary Optional dictionary containing coordinates of the study area boundary. Dictionary should be in format: {'west': west, 'south': south, 'east': east, 'north': north} Returns ------- grid_x: (N, 2) ndarray Meshgrid for the resulting interpolation in the x dimension grid_y: (N, 2) ndarray Meshgrid for the resulting interpolation in the y dimension ndarray img: (M, N) ndarray 2-dimensional array representing the interpolated values for each grid. Notes ----- This function acts as a wrapper for `interpolate_points` to allow it to generate a regular grid. This function interpolates points to a Cartesian plane, even if lat/lon coordinates are provided. See Also -------- interpolate_to_points """ # Generate the grid if boundary_coords is None: boundary_coords = get_boundary_coords(x, y) grid_x, grid_y = generate_grid(hres, boundary_coords) # Handle grid-to-points conversion, and use function from `interpolation` points_obs = np.array(list(zip(x, y))) points_grid = generate_grid_coords(grid_x, grid_y) img = interpolate_to_points(points_obs, z, points_grid, interp_type=interp_type, minimum_neighbors=minimum_neighbors, gamma=gamma, kappa_star=kappa_star, search_radius=search_radius, rbf_func=rbf_func, rbf_smooth=rbf_smooth) return grid_x, grid_y, img.reshape(grid_x.shape)
[docs]@exporter.export @preprocess_pandas def interpolate_to_isosurface(level_var, interp_var, level, bottom_up_search=True): r"""Linear interpolation of a variable to a given vertical level from given values. This function assumes that highest vertical level (lowest pressure) is zeroth index. A classic use of this function would be to compute the potential temperature on the dynamic tropopause (2 PVU surface). Parameters ---------- level_var: array_like (P, M, N) Level values in 3D grid on common vertical coordinate (e.g., PV values on isobaric levels). Assumes height dimension is highest to lowest in atmosphere. interp_var: array_like (P, M, N) Variable on 3D grid with same vertical coordinate as level_var to interpolate to given level (e.g., potential temperature on isobaric levels) level: int or float Desired interpolated level (e.g., 2 PVU surface) bottom_up_search : bool, optional Controls whether to search for levels bottom-up, or top-down. Defaults to True, which is bottom-up search. Returns ------- interp_level: (M, N) ndarray The interpolated variable (e.g., potential temperature) on the desired level (e.g., 2 PVU surface) Notes ----- This function implements a linear interpolation to estimate values on a given surface. The prototypical example is interpolation of potential temperature to the dynamic tropopause (e.g., 2 PVU surface) """ from ..calc import find_bounding_indices # Find index values above and below desired interpolated surface value above, below, good = find_bounding_indices(level_var, [level], axis=0, from_below=bottom_up_search) # Linear interpolation of variable to interpolated surface value interp_level = (((level - level_var[above]) / (level_var[below] - level_var[above])) * (interp_var[below] - interp_var[above])) + interp_var[above] # Handle missing values and instances where no values for surface exist above and below interp_level[~good] = np.nan minvar = (np.min(level_var, axis=0) >= level) maxvar = (np.max(level_var, axis=0) <= level) interp_level[0][minvar] = interp_var[-1][minvar] interp_level[0][maxvar] = interp_var[0][maxvar] return interp_level.squeeze()