# Copyright (c) 2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Interpolate data along a single axis."""
from __future__ import absolute_import, division
import warnings
import numpy as np
from ..cbook import broadcast_indices
from ..package_tools import Exporter
from ..units import units
from ..xarray import preprocess_xarray
exporter = Exporter(globals())
[docs]@exporter.export
@preprocess_xarray
def interpolate_nans_1d(x, y, kind='linear'):
"""Interpolate NaN values in y.
Interpolate NaN values in the y dimension. Works with unsorted x values.
Parameters
----------
x : array-like
1-dimensional array of numeric x-values
y : array-like
1-dimensional array of numeric y-values
kind : string
specifies the kind of interpolation x coordinate - 'linear' or 'log', optional.
Defaults to 'linear'.
Returns
-------
An array of the y coordinate data with NaN values interpolated.
"""
x_sort_args = np.argsort(x)
x = x[x_sort_args]
y = y[x_sort_args]
nans = np.isnan(y)
if kind == 'linear':
y[nans] = np.interp(x[nans], x[~nans], y[~nans])
elif kind == 'log':
y[nans] = np.interp(np.log(x[nans]), np.log(x[~nans]), y[~nans])
else:
raise ValueError('Unknown option for kind: {0}'.format(str(kind)))
return y[x_sort_args]
[docs]@exporter.export
@preprocess_xarray
@units.wraps(None, ('=A', '=A'))
def interpolate_1d(x, xp, *args, **kwargs):
r"""Interpolates data with any shape over a specified axis.
Interpolation over a specified axis for arrays of any shape.
Parameters
----------
x : array-like
1-D array of desired interpolated values.
xp : array-like
The x-coordinates of the data points.
args : array-like
The data to be interpolated. Can be multiple arguments, all must be the same shape as
xp.
axis : int, optional
The axis to interpolate over. Defaults to 0.
fill_value: float, optional
Specify handling of interpolation points out of data bounds. If None, will return
ValueError if points are out of bounds. Defaults to nan.
Returns
-------
array-like
Interpolated values for each point with coordinates sorted in ascending order.
Examples
--------
>>> x = np.array([1., 2., 3., 4.])
>>> y = np.array([1., 2., 3., 4.])
>>> x_interp = np.array([2.5, 3.5])
>>> metpy.calc.interp(x_interp, x, y)
array([2.5, 3.5])
Notes
-----
xp and args must be the same shape.
"""
# Pull out keyword args
fill_value = kwargs.pop('fill_value', np.nan)
axis = kwargs.pop('axis', 0)
# Make x an array
x = np.asanyarray(x).reshape(-1)
# Save number of dimensions in xp
ndim = xp.ndim
# Sort input data
sort_args = np.argsort(xp, axis=axis)
sort_x = np.argsort(x)
# indices for sorting
sorter = broadcast_indices(xp, sort_args, ndim, axis)
# sort xp
xp = xp[sorter]
# Ensure pressure in increasing order
variables = [arr[sorter] for arr in args]
# Make x broadcast with xp
x_array = x[sort_x]
expand = [np.newaxis] * ndim
expand[axis] = slice(None)
x_array = x_array[tuple(expand)]
# Calculate value above interpolated value
minv = np.apply_along_axis(np.searchsorted, axis, xp, x[sort_x])
minv2 = np.copy(minv)
# If fill_value is none and data is out of bounds, raise value error
if ((np.max(minv) == xp.shape[axis]) or (np.min(minv) == 0)) and fill_value is None:
raise ValueError('Interpolation point out of data bounds encountered')
# Warn if interpolated values are outside data bounds, will make these the values
# at end of data range.
if np.max(minv) == xp.shape[axis]:
warnings.warn('Interpolation point out of data bounds encountered')
minv2[minv == xp.shape[axis]] = xp.shape[axis] - 1
if np.min(minv) == 0:
minv2[minv == 0] = 1
# Get indices for broadcasting arrays
above = broadcast_indices(xp, minv2, ndim, axis)
below = broadcast_indices(xp, minv2 - 1, ndim, axis)
if np.any(x_array < xp[below]):
warnings.warn('Interpolation point out of data bounds encountered')
# Create empty output list
ret = []
# Calculate interpolation for each variable
for var in variables:
# Var needs to be on the *left* of the multiply to ensure that if it's a pint
# Quantity, it gets to control the operation--at least until we make sure
# masked arrays and pint play together better. See https://github.com/hgrecco/pint#633
var_interp = var[below] + (var[above] - var[below]) * ((x_array - xp[below]) /
(xp[above] - xp[below]))
# Set points out of bounds to fill value.
var_interp[minv == xp.shape[axis]] = fill_value
var_interp[x_array < xp[below]] = fill_value
# Check for input points in decreasing order and return output to match.
if x[0] > x[-1]:
var_interp = np.swapaxes(np.swapaxes(var_interp, 0, axis)[::-1], 0, axis)
# Output to list
ret.append(var_interp)
if len(ret) == 1:
return ret[0]
else:
return ret
[docs]@exporter.export
@preprocess_xarray
@units.wraps(None, ('=A', '=A'))
def log_interpolate_1d(x, xp, *args, **kwargs):
r"""Interpolates data with logarithmic x-scale over a specified axis.
Interpolation on a logarithmic x-scale for interpolation values in pressure coordintates.
Parameters
----------
x : array-like
1-D array of desired interpolated values.
xp : array-like
The x-coordinates of the data points.
args : array-like
The data to be interpolated. Can be multiple arguments, all must be the same shape as
xp.
axis : int, optional
The axis to interpolate over. Defaults to 0.
fill_value: float, optional
Specify handling of interpolation points out of data bounds. If None, will return
ValueError if points are out of bounds. Defaults to nan.
Returns
-------
array-like
Interpolated values for each point with coordinates sorted in ascending order.
Examples
--------
>>> x_log = np.array([1e3, 1e4, 1e5, 1e6])
>>> y_log = np.log(x_log) * 2 + 3
>>> x_interp = np.array([5e3, 5e4, 5e5])
>>> metpy.calc.log_interp(x_interp, x_log, y_log)
array([20.03438638, 24.63955657, 29.24472675])
Notes
-----
xp and args must be the same shape.
"""
# Pull out kwargs
fill_value = kwargs.pop('fill_value', np.nan)
axis = kwargs.pop('axis', 0)
# Log x and xp
log_x = np.log(x)
log_xp = np.log(xp)
return interpolate_1d(log_x, log_xp, *args, axis=axis, fill_value=fill_value)