Source code for metpy.interpolate.one_dimension

# Copyright (c) 2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Interpolate data along a single axis."""
from __future__ import absolute_import, division

import warnings

import numpy as np

from ..cbook import broadcast_indices
from ..package_tools import Exporter
from ..units import units
from ..xarray import preprocess_xarray

exporter = Exporter(globals())


[docs]@exporter.export @preprocess_xarray def interpolate_nans_1d(x, y, kind='linear'): """Interpolate NaN values in y. Interpolate NaN values in the y dimension. Works with unsorted x values. Parameters ---------- x : array-like 1-dimensional array of numeric x-values y : array-like 1-dimensional array of numeric y-values kind : string specifies the kind of interpolation x coordinate - 'linear' or 'log', optional. Defaults to 'linear'. Returns ------- An array of the y coordinate data with NaN values interpolated. """ x_sort_args = np.argsort(x) x = x[x_sort_args] y = y[x_sort_args] nans = np.isnan(y) if kind == 'linear': y[nans] = np.interp(x[nans], x[~nans], y[~nans]) elif kind == 'log': y[nans] = np.interp(np.log(x[nans]), np.log(x[~nans]), y[~nans]) else: raise ValueError('Unknown option for kind: {0}'.format(str(kind))) return y[x_sort_args]
[docs]@exporter.export @preprocess_xarray @units.wraps(None, ('=A', '=A')) def interpolate_1d(x, xp, *args, **kwargs): r"""Interpolates data with any shape over a specified axis. Interpolation over a specified axis for arrays of any shape. Parameters ---------- x : array-like 1-D array of desired interpolated values. xp : array-like The x-coordinates of the data points. args : array-like The data to be interpolated. Can be multiple arguments, all must be the same shape as xp. axis : int, optional The axis to interpolate over. Defaults to 0. fill_value: float, optional Specify handling of interpolation points out of data bounds. If None, will return ValueError if points are out of bounds. Defaults to nan. Returns ------- array-like Interpolated values for each point with coordinates sorted in ascending order. Examples -------- >>> x = np.array([1., 2., 3., 4.]) >>> y = np.array([1., 2., 3., 4.]) >>> x_interp = np.array([2.5, 3.5]) >>> metpy.calc.interp(x_interp, x, y) array([2.5, 3.5]) Notes ----- xp and args must be the same shape. """ # Pull out keyword args fill_value = kwargs.pop('fill_value', np.nan) axis = kwargs.pop('axis', 0) # Make x an array x = np.asanyarray(x).reshape(-1) # Save number of dimensions in xp ndim = xp.ndim # Sort input data sort_args = np.argsort(xp, axis=axis) sort_x = np.argsort(x) # indices for sorting sorter = broadcast_indices(xp, sort_args, ndim, axis) # sort xp xp = xp[sorter] # Ensure pressure in increasing order variables = [arr[sorter] for arr in args] # Make x broadcast with xp x_array = x[sort_x] expand = [np.newaxis] * ndim expand[axis] = slice(None) x_array = x_array[tuple(expand)] # Calculate value above interpolated value minv = np.apply_along_axis(np.searchsorted, axis, xp, x[sort_x]) minv2 = np.copy(minv) # If fill_value is none and data is out of bounds, raise value error if ((np.max(minv) == xp.shape[axis]) or (np.min(minv) == 0)) and fill_value is None: raise ValueError('Interpolation point out of data bounds encountered') # Warn if interpolated values are outside data bounds, will make these the values # at end of data range. if np.max(minv) == xp.shape[axis]: warnings.warn('Interpolation point out of data bounds encountered') minv2[minv == xp.shape[axis]] = xp.shape[axis] - 1 if np.min(minv) == 0: minv2[minv == 0] = 1 # Get indices for broadcasting arrays above = broadcast_indices(xp, minv2, ndim, axis) below = broadcast_indices(xp, minv2 - 1, ndim, axis) if np.any(x_array < xp[below]): warnings.warn('Interpolation point out of data bounds encountered') # Create empty output list ret = [] # Calculate interpolation for each variable for var in variables: # Var needs to be on the *left* of the multiply to ensure that if it's a pint # Quantity, it gets to control the operation--at least until we make sure # masked arrays and pint play together better. See https://github.com/hgrecco/pint#633 var_interp = var[below] + (var[above] - var[below]) * ((x_array - xp[below]) / (xp[above] - xp[below])) # Set points out of bounds to fill value. var_interp[minv == xp.shape[axis]] = fill_value var_interp[x_array < xp[below]] = fill_value # Check for input points in decreasing order and return output to match. if x[0] > x[-1]: var_interp = np.swapaxes(np.swapaxes(var_interp, 0, axis)[::-1], 0, axis) # Output to list ret.append(var_interp) if len(ret) == 1: return ret[0] else: return ret
[docs]@exporter.export @preprocess_xarray @units.wraps(None, ('=A', '=A')) def log_interpolate_1d(x, xp, *args, **kwargs): r"""Interpolates data with logarithmic x-scale over a specified axis. Interpolation on a logarithmic x-scale for interpolation values in pressure coordintates. Parameters ---------- x : array-like 1-D array of desired interpolated values. xp : array-like The x-coordinates of the data points. args : array-like The data to be interpolated. Can be multiple arguments, all must be the same shape as xp. axis : int, optional The axis to interpolate over. Defaults to 0. fill_value: float, optional Specify handling of interpolation points out of data bounds. If None, will return ValueError if points are out of bounds. Defaults to nan. Returns ------- array-like Interpolated values for each point with coordinates sorted in ascending order. Examples -------- >>> x_log = np.array([1e3, 1e4, 1e5, 1e6]) >>> y_log = np.log(x_log) * 2 + 3 >>> x_interp = np.array([5e3, 5e4, 5e5]) >>> metpy.calc.log_interp(x_interp, x_log, y_log) array([20.03438638, 24.63955657, 29.24472675]) Notes ----- xp and args must be the same shape. """ # Pull out kwargs fill_value = kwargs.pop('fill_value', np.nan) axis = kwargs.pop('axis', 0) # Log x and xp log_x = np.log(x) log_xp = np.log(xp) return interpolate_1d(log_x, log_xp, *args, axis=axis, fill_value=fill_value)