Note
Go to the end to download the full example code.
Smoothing#
Using MetPy’s smoothing functions.
This example demonstrates the various ways that MetPy’s smoothing function can be utilized. While this example utilizes basic NumPy arrays, these functions all work equally well with Pint Quantities or xarray DataArrays.
from itertools import product
import matplotlib.pyplot as plt
import numpy as np
import metpy.calc as mpcalc
Start with a base pattern with random noise
rng = np.random.default_rng(61461542)
size = 128
x, y = np.mgrid[:size, :size]
distance = np.sqrt((x - size / 2) ** 2 + (y - size / 2) ** 2)
raw_data = rng.random((size, size)) * 0.3 + distance / distance.max() * 0.7
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
ax.set_title('Raw Data')
ax.imshow(raw_data, vmin=0, vmax=1)
ax.axis('off')
plt.show()
Now, create a grid showing different smoothing options
fig, ax = plt.subplots(3, 3, figsize=(12, 12))
for i, j in product(range(3), range(3)):
ax[i, j].axis('off')
# Gaussian Smoother
ax[0, 0].imshow(mpcalc.smooth_gaussian(raw_data, 3), vmin=0, vmax=1)
ax[0, 0].set_title('Gaussian - Low Degree')
ax[0, 1].imshow(mpcalc.smooth_gaussian(raw_data, 8), vmin=0, vmax=1)
ax[0, 1].set_title('Gaussian - High Degree')
# Rectangular Smoother
ax[0, 2].imshow(mpcalc.smooth_rectangular(raw_data, (3, 7), 2), vmin=0, vmax=1)
ax[0, 2].set_title('Rectangular - 3x7 Window\n2 Passes')
# 5-point smoother
ax[1, 0].imshow(mpcalc.smooth_n_point(raw_data, 5, 1), vmin=0, vmax=1)
ax[1, 0].set_title('5-Point - 1 Pass')
ax[1, 1].imshow(mpcalc.smooth_n_point(raw_data, 5, 4), vmin=0, vmax=1)
ax[1, 1].set_title('5-Point - 4 Passes')
# Circular Smoother
ax[1, 2].imshow(mpcalc.smooth_circular(raw_data, 2, 2), vmin=0, vmax=1)
ax[1, 2].set_title('Circular - Radius 2\n2 Passes')
# 9-point smoother
ax[2, 0].imshow(mpcalc.smooth_n_point(raw_data, 9, 1), vmin=0, vmax=1)
ax[2, 0].set_title('9-Point - 1 Pass')
ax[2, 1].imshow(mpcalc.smooth_n_point(raw_data, 9, 4), vmin=0, vmax=1)
ax[2, 1].set_title('9-Point - 4 Passes')
# Arbitrary Window Smoother
ax[2, 2].imshow(mpcalc.smooth_window(raw_data, np.diag(np.ones(5)), 2), vmin=0, vmax=1)
ax[2, 2].set_title('Custom Window (Diagonal) \n2 Passes')
plt.show()
Total running time of the script: (0 minutes 0.532 seconds)