Source code for metpy.plots.declarative

#  Copyright (c) 2018,2019 MetPy Developers.
#  Distributed under the terms of the BSD 3-Clause License.
#  SPDX-License-Identifier: BSD-3-Clause
"""Declarative plotting tools."""
import collections
import contextlib
import copy
from datetime import datetime, timedelta
from difflib import get_close_matches
from itertools import cycle
import re

import matplotlib.patheffects as patheffects
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from traitlets import (Any, Bool, Float, HasTraits, Instance, Int, List, observe, TraitError,
                       Tuple, Unicode, Union, validate)

from . import ctables, wx_symbols
from ._mpl import TextCollection
from .cartopy_utils import import_cartopy
from .station_plot import StationPlot
from ..calc import reduce_point_density, smooth_n_point, zoom_xarray
from ..package_tools import Exporter
from ..units import units

ccrs = import_cartopy()
exporter = Exporter(globals())


def lookup_projection(projection_code):
    """Get a Cartopy projection based on a short abbreviation."""
    import cartopy.crs as ccrs

    projections = {'lcc': ccrs.LambertConformal(central_latitude=40, central_longitude=-100,
                                                standard_parallels=[30, 60]),
                   'ps': ccrs.NorthPolarStereo(central_longitude=-100),
                   'mer': ccrs.Mercator()}
    return projections[projection_code]


def lookup_map_feature(feature_name):
    """Get a Cartopy map feature based on a name."""
    import cartopy.feature as cfeature

    from . import cartopy_utils

    name = feature_name.upper()
    try:
        feat = getattr(cfeature, name)
        scaler = cfeature.AdaptiveScaler('110m', (('50m', 50), ('10m', 15)))
    except AttributeError:
        feat = getattr(cartopy_utils, name)
        scaler = cfeature.AdaptiveScaler('20m', (('5m', 5), ('500k', 1)))
    return feat.with_scale(scaler)


def plot_kwargs(data):
    """Set the keyword arguments for MapPanel plotting."""
    if hasattr(data.metpy, 'cartopy_crs'):
        # Conditionally add cartopy transform if we are on a map.
        kwargs = {'transform': data.metpy.cartopy_crs}
    else:
        kwargs = {}
    return kwargs


class ValidationMixin:
    """Provides validation of attribute names when set by user."""

    def __setattr__(self, name, value):
        """Set only permitted attributes."""
        allowlist = ['ax',
                     'data',
                     'handle',
                     'notify_change',
                     'panel'
                     ]

        allowlist.extend(self.trait_names())
        if name in allowlist or name.startswith('_'):
            super().__setattr__(name, value)
        else:
            closest = get_close_matches(name, allowlist, n=1)
            if closest:
                alt = closest[0]
                suggest = f" Perhaps you meant '{alt}'?"
            else:
                suggest = ''
            obj = self.__class__
            msg = f"'{name}' is not a valid attribute for {obj}." + suggest
            raise AttributeError(msg)


class MetPyHasTraits(HasTraits):
    """Provides modification layer on HasTraits for declarative classes."""

    def __dir__(self):
        """Filter dir to be more helpful for tab-completion in Jupyter."""
        return filter(
            lambda name: not (name in dir(HasTraits) or name.startswith('_')),
            dir(type(self))
        )


class Panel(MetPyHasTraits):
    """Draw one or more plots."""


@exporter.export
class PanelContainer(MetPyHasTraits, ValidationMixin):
    """Collects panels and set complete figure related settings (e.g., size)."""

    size = Union([Tuple(Union([Int(), Float()]), Union([Int(), Float()])),
                 Instance(type(None))], default_value=None)
    size.__doc__ = """This trait takes a tuple of (width, height) to set the size of the
    figure.

    This trait defaults to None and will assume the default `matplotlib.pyplot.figure` size.
    """

    panels = List(Instance(Panel))
    panels.__doc__ = """A list of panels to plot on the figure.

    This trait must contain at least one panel to plot on the figure."""

    @property
    def panel(self):
        """Provide simple access for a single panel."""
        return self.panels[0]

    @panel.setter
    def panel(self, val):
        self.panels = [val]

    @observe('panels')
    def _panels_changed(self, change):
        for panel in change.new:
            panel.parent = self
            panel.observe(self.refresh, names=('_need_redraw'))

    @property
    def figure(self):
        """Provide access to the underlying figure object."""
        if not hasattr(self, '_fig'):
            self._fig = plt.figure(figsize=self.size)
        return self._fig

[docs] def refresh(self, _): """Refresh the rendering of all panels.""" # First make sure everything is properly constructed self.draw() # Trigger the graphics refresh self.figure.canvas.draw() # Flush out interactive events--only ok on Agg for newer matplotlib with contextlib.suppress(NotImplementedError): self.figure.canvas.flush_events()
[docs] def draw(self): """Draw the collection of panels.""" for panel in self.panels: with panel.hold_trait_notifications(): panel.draw()
[docs] def save(self, *args, **kwargs): """Save the constructed graphic as an image file. This method takes a string for saved file name. Additionally, the same arguments and keyword arguments that `matplotlib.pyplot.savefig` does. """ self.draw() self.figure.savefig(*args, **kwargs)
[docs] def show(self): """Show the constructed graphic on the screen.""" self.draw() plt.show()
[docs] def copy(self): """Return a copy of the panel container.""" return copy.copy(self)
@exporter.export class MapPanel(Panel, ValidationMixin): """Set figure related elements for an individual panel. Parameters that need to be set include collecting all plotting types (e.g., contours, wind barbs, etc.) that are desired to be in a given panel. Additionally, traits can be set to plot map related features (e.g., coastlines, borders), projection, graphics area, and title. """ parent = Instance(PanelContainer, allow_none=True) layout = Tuple(Int(), Int(), Int(), default_value=(1, 1, 1)) layout.__doc__ = """A tuple that contains the description (nrows, ncols, index) of the panel position; default value is (1, 1, 1). This trait is set to describe the panel position and the default is for a single panel. For example, a four-panel plot will have two rows and two columns with the tuple setting for the upper-left panel as (2, 2, 1), upper-right as (2, 2, 2), lower-left as (2, 2, 3), and lower-right as (2, 2, 4). For more details see the documentation for `matplotlib.figure.Figure.add_subplot`. """ plots = List(Any()) plots.__doc__ = """A list of handles that represent the plots (e.g., `ContourPlot`, `FilledContourPlot`, `ImagePlot`) to put on a given panel. This trait collects the different plots, including contours and images, that are intended for a given panel. """ _need_redraw = Bool(default_value=True) area = Union([Unicode(), Tuple(Float(), Float(), Float(), Float())], allow_none=True, default_value=None) area.__doc__ = """A tuple or string value that indicates the graphical area of the plot. The tuple value corresponds to longitude/latitude box based on the projection of the map with the format (west-most longitude, east-most longitude, south-most latitude, north-most latitude). This tuple defines a box from the lower-left to the upper-right corner. This trait can also be set with a string value associated with the named geographic regions within MetPy. The tuples associated with the names are based on a PlatteCarree projection. For a CONUS region, the following strings can be used: 'us', 'spcus', 'ncus', and 'afus'. For regional plots, US postal state abbreviations can be used, such as 'co', 'ny', 'ca', et cetera. Providing a '+' or '-' suffix to the string value will zoom in or out, respectively. Providing multiple '+' or '-' characters will zoom in or out further. """ projection = Union([Unicode(), Instance('cartopy.crs.Projection')], default_value='data') projection.__doc__ = """A string for a pre-defined projection or a Cartopy projection object. There are three pre-defined projections that can be called with a short name: Lambert conformal conic ('lcc'), Mercator ('mer'), or polar-stereographic ('ps'), or 'area' to use a default projection based on the string area used. Additionally, this trait can be set to a Cartopy projection object. """ layers = List(Union([Unicode(), Instance('cartopy.feature.Feature')]), default_value=['coastline']) layers.__doc__ = """A list of strings for a pre-defined feature layer or a Cartopy Feature object. Like the projection, there are a couple of pre-defined feature layers that can be called using a short name. The pre-defined layers are: 'coastline', 'states', 'borders', 'lakes', 'land', 'ocean', 'rivers', 'usstates', and 'uscounties'. Additionally, this can accept Cartopy Feature objects. """ layers_edgecolor = List(Unicode(allow_none=True), default_value=['black']) layers_edgecolor.__doc__ = """A list of strings for a pre-defined edgecolor for a layer. An option to set a different color for the map layer edge colors. Length of list should match that of layers if not using default value. Behavior is to repeat colors if not enough provided by user. Use `None` value for 'ocean', 'lakes', 'rivers', and 'land'. """ layers_linewidth = List(Union([Int(), Float()], allow_none=True), default_value=[1]) layers_linewidth.__doc__ = """A list of values defining the linewidth for a layer. An option to set a different color for the map layer edge colors. Length of list should match that of layers if not using default value. Behavior is to repeat colors if not enough provided by user. Use `None` value for 'ocean', 'lakes', 'rivers', and 'land'. """ title = Unicode() title.__doc__ = """A string to set a title for the figure. This trait sets a user-defined title that will plot at the top center of the figure. """ left_title = Unicode(allow_none=True, default_value=None) left_title.__doc__ = """A string to set a title for the figure with the location on the top left of the figure. This trait sets a user-defined title that will plot at the top left of the figure. """ right_title = Unicode(allow_none=True, default_value=None) right_title.__doc__ = """A string to set a title for the figure with the location on the top right of the figure. This trait sets a user-defined title that will plot at the top right of the figure. """ title_fontsize = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) title_fontsize.__doc__ = """An integer or string value for the font size of the title of the figure. This trait sets the font size for the title that will plot at the top center of the figure. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ @validate('area') def _valid_area(self, proposal): """Check that proposed string or tuple is valid and turn string into a tuple extent.""" from .plot_areas import named_areas area = proposal['value'] # Parse string, check that string is valid, and determine extent based on string if isinstance(area, str): match = re.match(r'(\w+)([-+]*)$', area) if match is None: raise TraitError(f'"{area}" is not a valid area.') region, modifier = match.groups() region = region.lower() if region == 'global': extent = 'global' elif region in named_areas: self._area_proj = named_areas[region].projection extent = named_areas[region].bounds zoom = modifier.count('+') - modifier.count('-') extent = self._zoom_extent(extent, zoom) else: raise TraitError(f'"{area}" is not a valid string area.') # Otherwise, assume area is a tuple and check that latitudes/longitudes are valid else: west_lon, east_lon, south_lat, north_lat = area valid_west = -180 <= west_lon <= 180 valid_east = -180 <= east_lon <= 180 valid_south = -90 <= south_lat <= 90 valid_north = -90 <= north_lat <= 90 if not (valid_west and valid_east and valid_south and valid_north): raise TraitError(f'"{area}" is not a valid string area.') extent = area return extent @observe('plots') def _plots_changed(self, change): """Handle when our collection of plots changes.""" for plot in change.new: plot.parent = self plot.observe(self.refresh, names=('_need_redraw')) self._need_redraw = True @observe('parent') def _parent_changed(self, _): """Handle when the parent is changed.""" self.ax = None @property def _proj_obj(self): """Return the projection as a Cartopy object. Handles looking up a string for the projection, or if the projection is set to ``'data'`` looks at the data for the projection. """ if isinstance(self.projection, str): if self.projection == 'data': if isinstance(self.plots[0].griddata, tuple): proj = self.plots[0].griddata[0].metpy.cartopy_crs else: proj = self.plots[0].griddata.metpy.cartopy_crs elif self.projection == 'area': proj = self._area_proj else: proj = lookup_projection(self.projection) else: proj = self.projection return proj @property def _layer_features(self): """Iterate over all map features and return as Cartopy objects. Handle converting names of maps to auto-scaling map features. """ for item in self.layers: feat = lookup_map_feature(item) if isinstance(item, str) else item yield feat @observe('area') def _set_need_redraw(self, _): """Watch traits and set the need redraw flag as necessary.""" self._need_redraw = True @staticmethod def _zoom_extent(extent, zoom): """Calculate new bounds for zooming in or out of a given extent. ``extent`` is given as a tuple with four numeric values, in the same format as the ``area`` trait. If ``zoom`` = 0, the extent will not be changed from what was provided to the method If ``zoom`` > 0, the returned extent will be smaller (zoomed in) If ``zoom`` < 0, the returned extent will be larger (zoomed out) """ west_lon, east_lon, south_lat, north_lat = extent # Turn number of pluses and minuses into a number than can scale the latitudes and # longitudes of our extent zoom_multiplier = (1 - 2**-zoom) / 2 # Calculate bounds for new, zoomed extent new_north_lat = north_lat + (south_lat - north_lat) * zoom_multiplier new_south_lat = south_lat - (south_lat - north_lat) * zoom_multiplier new_east_lon = east_lon + (west_lon - east_lon) * zoom_multiplier new_west_lon = west_lon - (west_lon - east_lon) * zoom_multiplier return (new_west_lon, new_east_lon, new_south_lat, new_north_lat) @property def ax(self): """Get the :class:`matplotlib.axes.Axes` to draw on. Creates a new instance if necessary. """ # If we haven't actually made an instance yet, make one with the right size and # map projection. if getattr(self, '_ax', None) is None: self._ax = self.parent.figure.add_subplot(*self.layout, projection=self._proj_obj) return self._ax @ax.setter def ax(self, val): """Set the :class:`matplotlib.axes.Axes` to draw on. Clears existing state as necessary. """ if getattr(self, '_ax', None) is not None: self._ax.cla() self._ax = val
[docs] def refresh(self, changed): """Refresh the drawing if necessary.""" self._need_redraw = changed.new
[docs] def draw(self): """Draw the panel.""" # Only need to run if we've actually changed. if self._need_redraw: # Set the extent as appropriate based on the area. One special case for 'global'. if self.area == 'global': self.ax.set_global() elif self.area is not None: self.ax.set_extent(self.area, ccrs.PlateCarree()) # Draw all of the plots. for p in self.plots: with p.hold_trait_notifications(): p.draw() # Add all of the maps if len(self.layers) > len(self.layers_edgecolor): self.layers_edgecolor *= len(self.layers) if len(self.layers) > len(self.layers_linewidth): self.layers_linewidth *= len(self.layers) for i, feat in enumerate(self._layer_features): if self.layers[i] in ['', 'land', 'lake', 'river']: color = 'face' else: color = self.layers_edgecolor[i] width = self.layers_linewidth[i] self.ax.add_feature(feat, edgecolor=color, linewidth=width) # Use the set title or generate one. if (self.right_title is None) and (self.left_title is None): title = self.title or ',\n'.join(plot.name for plot in self.plots) self.ax.set_title(title, fontsize=self.title_fontsize) else: if self.title is not None: self.ax.set_title(self.title, fontsize=self.title_fontsize) if self.right_title is not None: self.ax.set_title(self.right_title, fontsize=self.title_fontsize, loc='right') if self.left_title is not None: self.ax.set_title(self.left_title, fontsize=self.title_fontsize, loc='left') self._need_redraw = False
def __copy__(self): """Return a copy of this MapPanel.""" # Create new, blank instance of MapPanel cls = self.__class__ obj = cls.__new__(cls) # Copy each attribute from current MapPanel to new MapPanel for name in self.trait_names(): # The 'plots' attribute is a list. # A copy must be made for each plot in the list. if name == 'plots': obj.plots = [copy.copy(plot) for plot in self.plots] else: setattr(obj, name, getattr(self, name)) return obj
[docs] def copy(self): """Return a copy of the panel.""" return copy.copy(self)
class SubsetTraits(MetPyHasTraits): """Represent common traits for subsetting data.""" x = Union([Float(allow_none=True, default_value=None), Instance(units.Quantity)]) x.__doc__ = """The x coordinate of the field to be plotted. This is a value with units to choose a desired x coordinate. For example, selecting a point or transect through the projection origin, set this parameter to ``0 * units.meter``. Note that this requires your data to have an x dimension coordinate. """ longitude = Union([Float(allow_none=True, default_value=None), Instance(units.Quantity)]) longitude.__doc__ = """The longitude coordinate of the field to be plotted. This is a value with units to choose a desired longitude coordinate. For example, selecting a point or transect through 95 degrees west, set this parameter to ``-95 * units.degrees_east``. Note that this requires your data to have a longitude dimension coordinate. """ y = Union([Float(allow_none=True, default_value=None), Instance(units.Quantity)]) y.__doc__ = """The y coordinate of the field to be plotted. This is a value with units to choose a desired x coordinate. For example, selecting a point or transect through the projection origin, set this parameter to ``0 * units.meter``. Note that this requires your data to have an y dimension coordinate. """ latitude = Union([Float(allow_none=True, default_value=None), Instance(units.Quantity)]) latitude.__doc__ = """The latitude coordinate of the field to be plotted. This is a value with units to choose a desired latitude coordinate. For example, selecting a point or transect through 40 degrees north, set this parameter to ``40 * units.degrees_north``. Note that this requires your data to have a latitude dimension coordinate. """ level = Union([Int(allow_none=True, default_value=None), Instance(units.Quantity)]) level.__doc__ = """The level of the field to be plotted. This is a value with units to choose a desired plot level. For example, selecting the 850-hPa level, set this parameter to ``850 * units.hPa``. Note that this requires your data to have a vertical dimension coordinate. """ time = Instance(datetime, allow_none=True) time.__doc__ = """Set the valid time to be plotted as a datetime object. If a forecast hour is to be plotted the time should be set to the valid future time, which can be done using the `~datetime.datetime` and `~datetime.timedelta` objects from the Python standard library. Note that this requires your data to have a time dimension coordinate. """ @exporter.export class Plots2D(SubsetTraits): """The highest level class related to plotting 2D data. This class collects all common methods no matter whether plotting a scalar variable or vector. Primary settings common to all types of 2D plots include those for data subsets. """ parent = Instance(Panel) _need_redraw = Bool(default_value=True) plot_units = Unicode(allow_none=True, default_value=None) plot_units.__doc__ = """The desired units to plot the field in. Setting this attribute will convert the units of the field variable to the given units for plotting using the MetPy Units module. """ scale = Float(default_value=1e0) scale.__doc__ = """Scale the field to be plotted by the value given. This attribute will scale the field by multiplying by the scale. For example, to scale vorticity to be whole values for contouring you could set the scale to 1e5, such that the data values will be multiplied by 10^5. """ @property def _cmap_obj(self): """Return the colormap object. Handle convert the name of the colormap to an object from matplotlib or metpy. """ try: return ctables.registry.get_colortable(self.colormap) except KeyError: return plt.get_cmap(self.colormap) @property def _norm_obj(self): """Return the normalization object. If `image_range` is a matplotlib normalization instance, returns it, otherwise converts the tuple image range to a matplotlib normalization instance. """ if isinstance(self.image_range, plt.Normalize): return self.image_range return plt.Normalize(*self.image_range)
[docs] def clear(self): """Clear the plot. Resets all internal state and sets need for redraw. """ if getattr(self, 'handle', None) is not None: if getattr(self.handle, 'collections', None) is not None: self.clear_collections() else: self.clear_handle() self._need_redraw = True
[docs] def clear_handle(self): """Clear the handle to the plot instance.""" self.handle.remove() self.handle = None
[docs] def clear_collections(self): """Clear the handle collections to the plot instance.""" for col in self.handle.collections: col.remove() self.handle = None
@observe('parent') def _parent_changed(self, _): """Handle setting the parent object for the plot.""" self.clear() @observe('x', 'longitude', 'y', 'latitude', 'level', 'time') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._griddata = None self.clear() # Can't be a Traitlet because notifications don't work with arrays for traits # notification never happens @property def data(self): """Xarray dataset that contains the field to be plotted.""" return self._data @data.setter def data(self, val): self._data = val self._update_data() @property def name(self): """Generate a name for the plot.""" if isinstance(self.field, tuple): ret = '' ret += ' and '.join(self.field) else: ret = self.field if self.level is not None: ret += f'@{self.level:d}' return ret
[docs] def copy(self): """Return a copy of the plot.""" return copy.copy(self)
@exporter.export class PlotScalar(Plots2D): """Defines the common elements of 2D scalar plots for single scalar value fields. Most of the other traits here are for one or more of the specific plots. Currently this allows too many options for `ContourPlot` since it does not user image_range, for example. Similar issues for `ImagePlot` and `FilledContourPlot`. """ field = Unicode() field.__doc__ = """Name of the field to be plotted. This is the name of the variable from the dataset that is to be plotted. An example, from a model grid file that uses the THREDDS convention for naming would be `Geopotential_height_isobaric` or `Temperature_isobaric`. For GOES-16/17 satellite data it might be `Sectorized_CMI`. To check for the variables available within a dataset, list the variables with the following command assuming the dataset was read using xarray as `ds`, `list(ds)` """ smooth_field = Int(allow_none=True, default_value=None) smooth_field.__doc__ = """Number of smoothing passes using 9-pt smoother. By setting this parameter with an integer value it will call the MetPy 9-pt smoother and provide a smoothed field for plotting. It is best to use this smoothing for data with finer resolutions (e.g., smaller grid spacings with a lot of grid points). See Also -------- metpy.calc.smooth_n_point, smooth_contour """ smooth_contour = Union([Int(allow_none=True, default_value=None), Tuple(Int(allow_none=True, default_value=None), Int(allow_none=True, default_value=None))]) smooth_contour.__doc__ = """Spline interpolation to smooth contours. This attribute requires settings for the `metpy.calc.zoom_xarray` function, which will produce a spline interpolation given an integer zoom factor. Either a single integer specifying the zoom factor (e.g., 4) or a tuple containing two integers for the zoom factor and the spline interpolation order can be used. The default spline interpolation order is 3. This is best used to smooth contours when contouring a sparse grid (e.g., when your data has a large grid spacing). See Also -------- metpy.calc.zoom_xarray, smooth_field """ @observe('field') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._griddata = None self.clear() @property def griddata(self): """Return the internal cached data.""" if getattr(self, '_griddata', None) is None: # Select our particular field of interest if self.field: data = self.data.metpy.parse_cf(self.field) elif hasattr(self.data.metpy, 'parse_cf'): # Handles the case where we have a dataset but no specified field raise ValueError('field attribute has not been set.') else: data = self.data # Subset to 2D using MetPy's fancy .sel subset = {'method': 'nearest'} for dim_coord in ('x', 'longitude', 'y', 'latitude', 'vertical', 'time'): selector = self.level if dim_coord == 'vertical' else getattr(self, dim_coord) if selector is not None: subset[dim_coord] = selector data_subset = data.metpy.sel(**subset).squeeze() if (data_subset.ndim != 2): if data_subset.ndim == 3: if (data_subset.shape[-1] not in (3, 4)): raise ValueError( 'Must provide a combination of subsetting values to give either 2D' ' data or 3D data subset for plotting with third dimension size 3' ' or 4' ) else: raise ValueError( 'Must provide a combination of subsetting values to give 2D data ' 'subset for plotting' ) # Handle unit conversion (both direct unit specification and scaling) if self.plot_units is not None: data_subset = data_subset.metpy.convert_units(self.plot_units) # Handle smoothing of data if self.smooth_field is not None: data_subset = smooth_n_point(data_subset, 9, self.smooth_field) # Handle zoom interpolation if self.smooth_contour is not None: if isinstance(self.smooth_contour, tuple): zoom = self.smooth_contour[0] order = self.smooth_contour[1] else: zoom = self.smooth_contour order = 3 data_subset = zoom_xarray(data_subset, zoom, order=order) self._griddata = data_subset * self.scale return self._griddata @property def plotdata(self): """Return the data for plotting. The two dimension coordinates and the data array. """ try: plot_x_dim = self.griddata.metpy.find_axis_number('x') plot_y_dim = self.griddata.metpy.find_axis_number('y') except ValueError: plot_x_dim = 1 plot_y_dim = 0 return ( self.griddata[self.griddata.dims[plot_x_dim]], self.griddata[self.griddata.dims[plot_y_dim]], self.griddata )
[docs] def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handle', None) is None: self._build() if getattr(self, 'colorbar', None) is not None: cbar = self.parent.ax.figure.colorbar( self.handle, orientation=self.colorbar, pad=0, aspect=50) cbar.ax.tick_params(labelsize=self.colorbar_fontsize) self._need_redraw = False
class ContourTraits(MetPyHasTraits): """Represents common contour traits.""" contours = Union([List(Float()), Int(), Instance(range)], default_value=25) contours.__doc__ = """A list of values to contour or an integer number of contour levels. This parameter sets contour or colorfill values for a plot. Values can be entered either as a Python range instance, a list of values or as an integer with the number of contours to be plotted (as per matplotlib documentation). A list can be generated by using square brackets or creating a numpy 1D array and converting it to a list with the `~numpy.ndarray.tolist` method. """ clabels = Bool(default_value=False) clabels.__doc__ = """A boolean (True/False) on whether to plot contour labels. To plot contour labels set this trait to ``True``, the default value is ``False``. """ label_fontsize = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) label_fontsize.__doc__ = """An integer, float, or string value to set the font size of labels for contours. This trait sets the font size for labels that will plot along contour lines. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ class ColorfillTraits(MetPyHasTraits): """Represent common colorfill traits.""" colormap = Unicode(allow_none=True, default_value=None) colormap.__doc__ = """The string name for a Matplolib or MetPy colormap. For example, the Blue-Purple colormap from Matplotlib can be accessed using 'BuPu'. """ image_range = Union([Tuple(Float(allow_none=True), Float(allow_none=True)), Instance(plt.Normalize)], default_value=(None, None)) image_range.__doc__ = """A tuple of min and max values that represent the range of values to color the rasterized image. The min and max values entered as a tuple will be converted to a `matplotlib.colors.Normalize` instance for plotting. """ colorbar = Unicode(default_value=None, allow_none=True) colorbar.__doc__ = """A string (horizontal/vertical) on whether to add a colorbar to the plot. To add a colorbar associated with the plot, set the trait to ``horizontal`` or ``vertical``,specifying the orientation of the produced colorbar. The default value is ``None``. """ colorbar_fontsize = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) colorbar_fontsize.__doc__ = """An integer, float, or string value to set the font size of labels for the colorbar. This trait sets the font size of labels for the colorbar. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ @exporter.export class ImagePlot(PlotScalar, ColorfillTraits, ValidationMixin): """Make raster image using `~matplotlib.pyplot.imshow` for satellite or colored image.""" @observe('colormap', 'image_range') def _set_need_redraw(self, _): """Handle changes to attributes that just need a simple redraw.""" if hasattr(self, 'handle'): self.handle.set_cmap(self._cmap_obj) self.handle.set_norm(self._norm_obj) self._need_redraw = True @observe('colorbar') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() @property def plotdata(self): """Return the data for plotting. The two dimension coordinates and the data array """ x_like = self.griddata[self.griddata.dims[1]] # At least currently imshow with cartopy does not like this if 'degree' in x_like.units: x_like = x_like.data x_like[x_like > 180] -= 360 return x_like, self.griddata[self.griddata.dims[0]], self.griddata def _build(self): """Build the plot by calling any plotting methods as necessary.""" x_like, y_like, imdata = self.plotdata kwargs = plot_kwargs(imdata) # If we're on a map, we use min/max for y and manually figure out origin to try to # avoid upside down images created by images where y[0] > y[-1], as well as # specifying the transform kwargs['extent'] = (x_like[0], x_like[-1], y_like.min(), y_like.max()) kwargs['origin'] = 'upper' if y_like[0] > y_like[-1] else 'lower' self.handle = self.parent.ax.imshow( imdata, cmap=self._cmap_obj, norm=self._norm_obj, **kwargs ) @exporter.export class ContourPlot(PlotScalar, ContourTraits, ValidationMixin): """Make contour plots by defining specific traits.""" linecolor = Unicode('black') linecolor.__doc__ = """A string value to set the color of plotted contours; default is black. This trait can be set to any Matplotlib color (https://matplotlib.org/3.1.0/gallery/color/named_colors.html) """ linewidth = Int(2) linewidth.__doc__ = """An integer value to set the width of plotted contours; default value is 2. This trait changes the thickness of contour lines with a higher value plotting a thicker line. """ linestyle = Unicode(None, allow_none=True) linestyle.__doc__ = """A string value to set the linestyle (e.g., dashed), or `None`; default is `None`, which, when using monochrome line colors, uses solid lines for positive values and dashed lines for negative values. The valid string values are those of Matplotlib which are 'solid', 'dashed', 'dotted', and 'dashdot', as well as their short codes ('-', '--', '.', '-.'). The object `None`, as described above, can also be used. """ @observe('contours', 'linecolor', 'linewidth', 'linestyle', 'clabels', 'label_fontsize') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling any plotting methods as necessary.""" x_like, y_like, imdata = self.plotdata kwargs = plot_kwargs(imdata) self.handle = self.parent.ax.contour(x_like, y_like, imdata, self.contours, colors=self.linecolor, linewidths=self.linewidth, linestyles=self.linestyle, **kwargs) if self.clabels: self.handle.clabel(inline=1, fmt='%.0f', inline_spacing=8, use_clabeltext=True, fontsize=self.label_fontsize) @exporter.export class FilledContourPlot(PlotScalar, ColorfillTraits, ContourTraits, ValidationMixin): """Make color-filled contours plots by defining appropriate traits.""" @observe('contours', 'colorbar', 'colormap') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling any plotting methods as necessary.""" x_like, y_like, imdata = self.plotdata kwargs = plot_kwargs(imdata) self.handle = self.parent.ax.contourf(x_like, y_like, imdata, self.contours, cmap=self._cmap_obj, norm=self._norm_obj, **kwargs) @exporter.export class RasterPlot(PlotScalar, ColorfillTraits): """Make raster plots by defining relevant traits.""" @observe('image_range', 'colorbar', 'colormap') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of pcolormesh() self.clear() def _build(self): """Build the raster plot by calling any plotting methods as necessary.""" x_like, y_like, imdata = self.plotdata kwargs = plot_kwargs(imdata) self.handle = self.parent.ax.pcolormesh(x_like, y_like, imdata, cmap=self._cmap_obj, norm=self._norm_obj, **kwargs) @exporter.export class PlotVector(Plots2D): """Defines common elements for 2D vector plots. This class collects common elements including the field trait, which is a tuple argument accepting two strings, for plotting 2D vector fields. """ field = Tuple(Unicode(), Unicode()) field.__doc__ = """A tuple containing the two components of the vector field from the dataset in the form (east-west component, north-south component). For a wind barb plot each component of the wind must be specified and should be of the form (u-wind, v-wind). """ pivot = Unicode('middle') pivot.__doc__ = """A string setting the pivot point of the vector. Default value is 'middle'. This trait takes the values of the keyword argument from `matplotlin.pyplot.barbs`: 'tip' or 'middle'. """ skip = Tuple(Int(), Int(), default_value=(1, 1)) skip.__doc__ = """A tuple of integers to indicate the number of grid points to skip between plotting vectors. Default is (1, 1). This trait is to be used to reduce the number of vectors plotted in the (east-west, north-south) components. The two values can be set to the same or different integer values depending on what is desired. """ earth_relative = Bool(default_value=True) earth_relative.__doc__ = """A boolean value to indicate whether the vector to be plotted is earth- or grid-relative. Default value is `True`, indicating that vectors are earth-relative. Common gridded meteorological datasets including GFS and NARR output contain wind components that are earth-relative. The primary exception is NAM output with wind components that are grid-relative. For any grid-relative vectors set this trait to `False`. This value is ignored for 2D vector fields not in the plane of the plot (e.g., cross sections). """ color = Unicode(default_value='black') color.__doc__ = """A string value that controls the color of the vectors. Default value is black. This trait can be set to any named color from `Matplotlibs Colors <https://matplotlib.org/3.1.0/gallery/color/named_colors.html>` """ @observe('field') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._griddata_u = None self._griddata_v = None self.clear() @property def griddata(self): """Return the internal cached data.""" if getattr(self, '_griddata_u', None) is None: if not self.field[0]: raise ValueError('field attribute not set correctly') u = self.data.metpy.parse_cf(self.field[0]) v = self.data.metpy.parse_cf(self.field[1]) # Subset to 2D using MetPy's fancy .sel subset = {'method': 'nearest'} for dim_coord in ('x', 'longitude', 'y', 'latitude', 'vertical', 'time'): selector = self.level if dim_coord == 'vertical' else getattr(self, dim_coord) if selector is not None: subset[dim_coord] = selector data_subset_u = u.metpy.sel(**subset).squeeze() data_subset_v = v.metpy.sel(**subset).squeeze() if data_subset_u.ndim != 2 or data_subset_v.ndim != 2: raise ValueError( 'Must provide a combination of subsetting values to give 2D data subsets ' 'for plotting' ) if self.plot_units is not None: data_subset_u = data_subset_u.metpy.convert_units(self.plot_units) data_subset_v = data_subset_v.metpy.convert_units(self.plot_units) self._griddata_u = data_subset_u * self.scale self._griddata_v = data_subset_v * self.scale return (self._griddata_u, self._griddata_v) @property def plotdata(self): """Return the data for plotting. The dimension coordinates and data arrays. """ check_earth_relative = False try: plot_x_dim = self.griddata[0].metpy.find_axis_number('x') plot_y_dim = self.griddata[0].metpy.find_axis_number('y') check_earth_relative = True except ValueError: plot_x_dim = 1 plot_y_dim = 0 x_like = self.griddata[0][self.griddata[0].dims[plot_x_dim]] y_like = self.griddata[0][self.griddata[0].dims[plot_y_dim]] if check_earth_relative: # Conditionally apply earth v. grid relative adjustments if we are in the plane of # the plot # TODO: this seems like it could use a refactor to be more explicit about what # coords are grid x and y vs latitude and longitude (both for code readability and # error-proneness). x, y = x_like, y_like if self.earth_relative: x, y, _ = ccrs.PlateCarree().transform_points( self.griddata[0].metpy.cartopy_crs, *np.meshgrid(x, y) ).T x_like = x.T y_like = y.T else: if 'degree' in x.units: x, y, _ = self.griddata[0].metpy.cartopy_crs.transform_points( ccrs.PlateCarree(), *np.meshgrid(x, y)).T x_like = x.T y_like = y.T if x_like.ndim == 1: x_like, y_like = np.meshgrid(x_like, y_like) return x_like, y_like, self.griddata[0], self.griddata[1]
[docs] def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handle', None) is None: self._build() self._need_redraw = False
@exporter.export class BarbPlot(PlotVector, ValidationMixin): """Make plots of wind barbs on a map with traits to refine the look of plotted elements.""" barblength = Float(default_value=7) barblength.__doc__ = """A float value that changes the length of the wind barbs. Default value is 7. This trait corresponds to the keyword length in `matplotlib.pyplot.barbs`. """ @observe('barblength', 'pivot', 'skip', 'earth_relative', 'color') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling needed plotting methods as necessary.""" x_like, y_like, u, v = self.plotdata kwargs = plot_kwargs(u) # Conditionally apply the proper transform if 'transform' in kwargs and self.earth_relative: kwargs['transform'] = ccrs.PlateCarree() wind_slice = (slice(None, None, self.skip[0]), slice(None, None, self.skip[1])) self.handle = self.parent.ax.barbs( x_like[wind_slice], y_like[wind_slice], u.values[wind_slice], v.values[wind_slice], color=self.color, pivot=self.pivot, length=self.barblength, zorder=2, **kwargs) @exporter.export class ArrowPlot(PlotVector, ValidationMixin): """Make plots of wind barbs on a map with traits to refine the look of plotted elements.""" arrowscale = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) arrowscale.__doc__ = """Number of data units per arrow length unit, e.g., m/s per plot width; a smaller scale parameter makes the arrow longer. Default is `None`. If `None`, a simple autoscaling algorithm is used, based on the average vector length and the number of vectors. The arrow length unit is given by the `key_length` attribute. This trait corresponds to the keyword length in `matplotlib.pyplot.quiver`. """ arrowkey = Tuple(Float(allow_none=True), Float(allow_none=True), Float(allow_none=True), Unicode(allow_none=True), Unicode(allow_none=True), default_value=None, allow_none=True) arrowkey.__doc__ = """Set the characteristics of an arrow key using a tuple of values representing (value, xloc, yloc, position, string). Default is `None`. If `None`, no vector key will be plotted. value default is 100 xloc default is 0.85 yloc default is 1.02 position default is 'E' (options are 'N', 'S', 'E', 'W') label default is an empty string If you wish to change a characteristic of the arrowkey you'll need to have a tuple of five elements, fill in the full tuple using `None` for those characteristics you wish to use the default value and put in the new values for the other elements. This trait corresponds to the keyword length in `matplotlib.pyplot.quiverkey`. """ @observe('arrowscale', 'pivot', 'skip', 'earth_relative', 'color', 'arrowkey') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of quiver() self.clear() def _build(self): """Build the plot by calling needed plotting methods as necessary.""" x_like, y_like, u, v = self.plotdata kwargs = plot_kwargs(u) # Conditionally apply the proper transform if 'transform' in kwargs and self.earth_relative: kwargs['transform'] = ccrs.PlateCarree() wind_slice = (slice(None, None, self.skip[0]), slice(None, None, self.skip[1])) self.handle = self.parent.ax.quiver( x_like[wind_slice], y_like[wind_slice], u.values[wind_slice], v.values[wind_slice], color=self.color, pivot=self.pivot, scale=self.arrowscale, **kwargs) # The order here needs to match the order of the tuple if self.arrowkey is not None: key_kwargs = {'U': 100, 'X': 0.85, 'Y': 1.02, 'labelpos': 'E', 'label': ''} for name, val in zip(key_kwargs, self.arrowkey): if val is not None: key_kwargs[name] = val self.parent.ax.quiverkey(self.handle, labelcolor=self.color, **key_kwargs) @exporter.export class PlotObs(MetPyHasTraits, ValidationMixin): """The highest level class related to plotting observed surface and upperair data. This class collects all common methods no matter whether plotting a upper-level or surface data using station plots. List of Traits: * level * time * fields * locations (optional) * time_window (optional) * formats (optional) * colors (optional) * plot_units (optional) * vector_field (optional) * vector_field_color (optional) * vector_field_length (optional) * vector_plot_units (optional) * reduce_points (optional) * fontsize (optional) """ parent = Instance(Panel) _need_redraw = Bool(default_value=True) level = Union([Int(allow_none=True), Instance(units.Quantity)], default_value=None) level.__doc__ = """The level of the field to be plotted. This is a value with units to choose the desired plot level. For example, selecting the 850-hPa level, set this parameter to ``850 * units.hPa``. For surface data, parameter must be set to `None`. """ time = Instance(datetime, allow_none=True) time.__doc__ = """Set the valid time to be plotted as a datetime object. If a forecast hour is to be plotted the time should be set to the valid future time, which can be done using the `~datetime.datetime` and `~datetime.timedelta` objects from the Python standard library. """ time_window = Instance(timedelta, default_value=timedelta(minutes=0), allow_none=True) time_window.__doc__ = """Set a range to look for data to plot as a timedelta object. If this parameter is set, it will subset the data provided to be within the time and plus or minus the range value given. If there is more than one observation from a given station then it will keep only the most recent one for plotting purposes. Default value is to have no range. (optional) """ fields = List(Unicode()) fields.__doc__ = """Name of the scalar or symbol fields to be plotted. List of parameters to be plotted around station plot (e.g., temperature, dewpoint, skyc). """ locations = List(default_value=['C']) locations.__doc__ = """List of strings for scalar or symbol field plotting locations. List of parameters locations for plotting parameters around the station plot (e.g., NW, NE, SW, SE, W, C). (optional) """ formats = List(default_value=[None]) formats.__doc__ = """List of the scalar, symbol, and text field data formats. (optional) List of scalar parameters formatters or mapping values (if symbol) for plotting text and/or symbols around the station plot (e.g., for pressure variable ```lambda v: format(10 * v, '.0f')[-3:]```). For symbol mapping the following options are available to be put in as a string: current_weather, sky_cover, low_clouds, mid_clouds, high_clouds, and pressure_tendency. For plotting text, use the format setting of 'text'. """ colors = List(Unicode(), default_value=['black']) colors.__doc__ = """List of the scalar and symbol field colors. List of strings that represent the colors to be used for the variable being plotted. (optional) """ vector_field = List(default_value=[None], allow_none=True) vector_field.__doc__ = """List of the vector field to be plotted. List of vector components to combined and plotted from the center of the station plot (e.g., wind components). (optional) """ vector_field_color = Unicode('black', allow_none=True) vector_field_color.__doc__ = """String color name to plot the vector. (optional)""" vector_field_length = Int(default_value=None, allow_none=True) vector_field_length.__doc__ = """Integer value to set the length of the plotted vector. (optional) """ reduce_points = Float(default_value=0) reduce_points.__doc__ = """Float to reduce number of points plotted. (optional)""" plot_units = List(default_value=[None], allow_none=True) plot_units.__doc__ = """A list of the desired units to plot the fields in. Setting this attribute will convert the units of the field variable to the given units for plotting using the MetPy Units module, provided that units are attached to the DataFrame. """ vector_plot_units = Unicode(default_value=None, allow_none=True) vector_plot_units.__doc__ = """The desired units to plot the vector field in. Setting this attribute will convert the units of the field variable to the given units for plotting using the MetPy Units module, provided that units are attached to the DataFrame. """ fontsize = Int(10) fontsize.__doc__ = """An integer value to set the font size of station plots. Default is 10 pt."""
[docs] def clear(self): """Clear the plot. Resets all internal state and sets need for redraw. """ if getattr(self, 'handle', None) is not None: self.handle.ax.cla() self.handle = None self._need_redraw = True
@observe('parent') def _parent_changed(self, _): """Handle setting the parent object for the plot.""" self.clear() @observe('fields', 'level', 'time', 'vector_field', 'time_window') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._obsdata = None self.clear() # Can't be a Traitlet because notifications don't work with arrays for traits # notification never happens @property def data(self): """Pandas dataframe that contains the fields to be plotted.""" return self._data @data.setter def data(self, val): self._data = val self._update_data() @property def name(self): """Generate a name for the plot.""" ret = '' ret += ' and '.join(self.fields) if self.level is not None: ret += f'@{self.level:d}' return ret @property def obsdata(self): """Return the internal cached data.""" if getattr(self, '_obsdata', None) is None: # Use a copy of data so we retain all of the original data passed in unmodified data = self.data # Subset for a particular level if given if self.level is not None: mag = getattr(self.level, 'magnitude', self.level) data = data[data.pressure == mag] # Subset for our particular time if self.time is not None: # If data are not currently indexed by time, we need to do so choosing one of # the columns we're looking for if not isinstance(data.index, pd.DatetimeIndex): time_vars = ['valid', 'time', 'valid_time', 'date_time', 'date'] dim_times = [time_var for time_var in time_vars if time_var in list(self.data)] if not dim_times: raise AttributeError( 'Time variable not found. Valid variable names are:' f'{time_vars}') data = data.set_index(dim_times[0]) if not isinstance(data.index, pd.DatetimeIndex): # Convert our column of interest to a datetime data = data.reset_index() time_index = pd.to_datetime(data[dim_times[0]]) data = data.set_index(time_index) # Works around the fact that traitlets 4.3 insists on sending us None by # default because timedelta(0) is Falsey. window = timedelta(minutes=0) if self.time_window is None else self.time_window # Indexes need to be properly sorted for the slicing below to work; the # error you get if that's not the case really convoluted, which is why # we don't rely on users doing it. data = data.sort_index() data = data[self.time - window:self.time + window] # Look for the station column stn_vars = ['station', 'stn', 'station_id', 'stid'] dim_stns = [stn_var for stn_var in stn_vars if stn_var in list(self.data)] if not dim_stns: raise AttributeError('Station variable not found. Valid variable names are: ' f'{stn_vars}') else: dim_stn = dim_stns[0] # Make sure we only use one observation per station self._obsdata = data.groupby(dim_stn).tail(1) return self._obsdata @property def plotdata(self): """Return the data for plotting. The data arrays, x coordinates, and y coordinates. """ plot_data = {} for dim_name in list(self.obsdata): if dim_name.find('lat') != -1: lat = self.obsdata[dim_name] elif dim_name.find('lon') != -1: lon = self.obsdata[dim_name] else: plot_data[dim_name] = self.obsdata[dim_name] return lon.values, lat.values, plot_data
[docs] def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handle', None) is None: self._build() self._need_redraw = False
@observe('colors', 'formats', 'locations', 'reduce_points', 'vector_field_color') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling needed plotting methods as necessary.""" lon, lat, data = self.plotdata # Use the cartopy map projection to transform station locations to the map and # then refine the number of stations plotted by setting a radius scale = 1. if self.parent._proj_obj == ccrs.PlateCarree() else 100000. point_locs = self.parent._proj_obj.transform_points(ccrs.PlateCarree(), lon, lat) subset = reduce_point_density(point_locs, self.reduce_points * scale) self.handle = StationPlot(self.parent.ax, lon[subset], lat[subset], clip_on=True, transform=ccrs.PlateCarree(), fontsize=self.fontsize) for i, ob_type in enumerate(self.fields): field_kwargs = {} location = self.locations[i] if len(self.locations) > 1 else self.locations[0] if len(self.colors) > 1: field_kwargs['color'] = self.colors[i] else: field_kwargs['color'] = self.colors[0] if len(self.formats) > 1: field_kwargs['formatter'] = self.formats[i] else: field_kwargs['formatter'] = self.formats[0] if len(self.plot_units) > 1: field_kwargs['plot_units'] = self.plot_units[i] else: field_kwargs['plot_units'] = self.plot_units[0] if hasattr(self.data, 'units') and (field_kwargs['plot_units'] is not None): parameter = units.Quantity(data[ob_type][subset].values, self.data.units[ob_type]) else: parameter = data[ob_type][subset] if field_kwargs['formatter'] is not None: mapper = getattr(wx_symbols, str(field_kwargs['formatter']), None) if mapper is not None: field_kwargs.pop('formatter') self.handle.plot_symbol(location, parameter, mapper, **field_kwargs) else: if self.formats[i] == 'text': self.handle.plot_text(location, parameter, color=field_kwargs['color']) else: self.handle.plot_parameter(location, parameter, **field_kwargs) else: field_kwargs.pop('formatter') self.handle.plot_parameter(location, parameter, **field_kwargs) if self.vector_field[0] is not None: vector_kwargs = { 'color': self.vector_field_color, 'plot_units': self.vector_plot_units, } if hasattr(self.data, 'units') and (vector_kwargs['plot_units'] is not None): u = units.Quantity(data[self.vector_field[0]][subset].values, self.data.units[self.vector_field[0]]) v = units.Quantity(data[self.vector_field[1]][subset].values, self.data.units[self.vector_field[1]]) else: vector_kwargs.pop('plot_units') u = data[self.vector_field[0]][subset] v = data[self.vector_field[1]][subset] if self.vector_field_length is not None: vector_kwargs['length'] = self.vector_field_length self.handle.plot_barb(u, v, **vector_kwargs)
[docs] def copy(self): """Return a copy of the plot.""" return copy.copy(self)
@exporter.export class PlotGeometry(MetPyHasTraits): """Plot collections of Shapely objects and customize their appearance.""" parent = Instance(Panel) _need_redraw = Bool(default_value=True) geometry = Instance(collections.abc.Iterable, allow_none=False) geometry.__doc__ = """A collection of Shapely objects to plot. A collection of Shapely objects, such as the 'geometry' column from a ``geopandas.GeoDataFrame``. Acceptable Shapely objects are ``shapely.MultiPolygon``, ``shapely.Polygon``, ``shapely.MultiLineString``, ``shapely.LineString``, ``shapely.MultiPoint``, and ``shapely.Point``. """ fill = Union([Instance(collections.abc.Iterable), Unicode()], default_value=['lightgray'], allow_none=True) fill.__doc__ = """Fill color(s) for polygons and points. A single string (color name or hex code) or collection of strings with which to fill polygons and points. If a collection, the first color corresponds to the first Shapely object in `geometry`, the second color corresponds to the second Shapely object, and so on. If `fill` is shorter than `geometry`, `fill` cycles back to the beginning, repeating the sequence of colors as needed. Default value is lightgray. """ stroke = Union([Instance(collections.abc.Iterable), Unicode()], default_value=['black'], allow_none=True) stroke.__doc__ = """Stroke color(s) for polygons and line color(s) for lines. A single string (color name or hex code) or collection of strings with which to outline polygons and color lines. If a collection, the first color corresponds to the first Shapely object in `geometry`, the second color corresponds to the second Shapely object, and so on. If `stroke` is shorter than `geometry`, `stroke` cycles back to the beginning, repeating the sequence of colors as needed. Default value is black. """ marker = Unicode(default_value='.', allow_none=False) marker.__doc__ = """Symbol used to denote points. Accepts any matplotlib marker. Default value is '.', which plots a dot at each point. """ labels = Instance(collections.abc.Iterable, allow_none=True) labels.__doc__ = """A collection of labels corresponding to plotted geometry. A collection of strings to use as labels for geometry, such as a column from a ``Geopandas.GeoDataFrame``. The first label corresponds to the first Shapely object in `geometry`, the second label corresponds to the second Shapely object, and so on. The length of `labels` must be equal to the length of `geometry`. Labels are positioned along the edge of polygons, and below lines and points. No labels are plotted if this attribute is left undefined, or set equal to `None`. """ label_fontsize = Union([Int(), Float(), Unicode()], default_value=None, allow_none=True) label_fontsize.__doc__ = """An integer or string value for the font size of labels. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ label_facecolor = Union([Instance(collections.abc.Iterable), Unicode()], allow_none=True) label_facecolor.__doc__ = """Font color(s) for labels. A single string (color name or hex code) or collection of strings for the font color of labels. If a collection, the first color corresponds to the label of the first Shapely object in `geometry`, the second color corresponds to the label of the second Shapely object, and so on. Default value is `stroke`. """ label_edgecolor = Union([Instance(collections.abc.Iterable), Unicode()], allow_none=True) label_edgecolor.__doc__ = """Outline color(s) for labels. A single string (color name or hex code) or collection of strings for the outline color of labels. If a collection, the first color corresponds to the label of the first Shapely object in `geometry`, the second color corresponds to the label of the second Shapely object, and so on. Default value is `fill`. """ @staticmethod @validate('geometry') def _valid_geometry(_, proposal): """Cast `geometry` into a list once it is provided by user. Users can provide any kind of collection, such as a ``GeoPandas.GeoSeries``, and this turns them into a list. """ geometry = proposal['value'] return list(geometry) @staticmethod @validate('fill', 'stroke', 'label_facecolor', 'label_edgecolor') def _valid_color_list(_, proposal): """Cast color-related attributes into a list once provided by user. This is necessary because _build() expects to cycle through a list of colors when assigning them to the geometry. """ color = proposal['value'] if isinstance(color, str): color = [color] # `color` must be a collection if it is not a string else: color = list(color) return color @staticmethod @validate('labels') def _valid_labels(_, proposal): """Cast `labels` into a list once provided by user.""" labels = proposal['value'] return list(labels) @observe('fill', 'stroke') def _update_label_colors(self, change): """Set default text colors using `fill` and `stroke`. If `label_facecolor` or `label_edgecolor` have not been specified, provide default colors for those attributes using `fill` and `stroke`. """ if change['name'] == 'fill' and self.label_edgecolor is None: self.label_edgecolor = self.fill elif change['name'] == 'stroke' and self.label_facecolor is None: self.label_facecolor = self.stroke @property def name(self): """Generate a name for the plot.""" # Unlike Plots2D and PlotObs, there are no other attributes (such as 'fields' or # 'levels') from which to name the plot. A generic name is returned here in case the # user does not provide their own title, in which case MapPanel.draw() looks here. return 'Geometry Plot' @staticmethod def _position_label(geo_obj, label): """Return a (lon, lat) where the label of a polygon/line/point can be placed.""" from shapely.geometry import MultiLineString, MultiPoint, MultiPolygon, Polygon # A hash of the label is used in choosing a point along the polygon or line that # will be returned. This "psuedo-randomizes" the position of a label, in hopes of # spatially dispersing the labels and lessening the chance that labels overlap. label_hash = sum(map(ord, str(label))) # If object is a MultiPolygon or MultiLineString, associate the label with the single # largest Polygon or LineString from the collection. If MultiPoint, associate the label # with one of the Points in the MultiPoint, chosen based on the label hash. if isinstance(geo_obj, (MultiPolygon, MultiLineString)): geo_obj = max(geo_obj.geoms, key=lambda x: x.length) elif isinstance(geo_obj, MultiPoint): geo_obj = geo_obj.geoms[label_hash % len(geo_obj.geoms)] # Get the list of coordinates of the polygon/line/point if isinstance(geo_obj, Polygon): coords = geo_obj.exterior.coords else: coords = geo_obj.coords return coords[label_hash % len(coords)] def _draw_label(self, text, lon, lat, color='black', outline='white', offset=(0, 0)): """Draw a label to the plot. Parameters ---------- text : str The label's text lon : float Longitude at which to position the label lat : float Latitude at which to position the label color : str (default: 'black') Name or hex code for the color of the text outline : str (default: 'white') Name or hex code of the color of the outline of the text offset : tuple (default: (0, 0)) A tuple containing the x- and y-offset of the label, respectively """ path_effects = [patheffects.withStroke(linewidth=4, foreground=outline)] self.parent.ax.add_artist(TextCollection([lon], [lat], [str(text)], va='center', ha='center', offset=offset, weight='demi', size=self.label_fontsize, color=color, path_effects=path_effects, transform=ccrs.PlateCarree()))
[docs] def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handles', None) is None: self._build() self._need_redraw = False
[docs] def copy(self): """Return a copy of the plot.""" return copy.copy(self)
def _build(self): """Build the plot by calling needed plotting methods as necessary.""" from shapely.geometry import (LineString, MultiLineString, MultiPoint, MultiPolygon, Point, Polygon) # Cast attributes to a list if None, since traitlets doesn't call validators (like # `_valid_color_list()` and `_valid_labels()`) when the proposed value is None. self.fill = ['none'] if self.fill is None else self.fill self.stroke = ['none'] if self.stroke is None else self.stroke self.labels = [''] if self.labels is None else self.labels self.label_edgecolor = (['none'] if self.label_edgecolor is None else self.label_edgecolor) self.label_facecolor = (['none'] if self.label_facecolor is None else self.label_facecolor) # Each Shapely object is plotted separately with its corresponding colors and label for geo_obj, stroke, fill, label, fontcolor, fontoutline in zip( self.geometry, cycle(self.stroke), cycle(self.fill), cycle(self.labels), cycle(self.label_facecolor), cycle(self.label_edgecolor)): # Plot the Shapely object with the appropriate method and colors if isinstance(geo_obj, (MultiPolygon, Polygon)): self.parent.ax.add_geometries([geo_obj], edgecolor=stroke, facecolor=fill, crs=ccrs.PlateCarree()) elif isinstance(geo_obj, (MultiLineString, LineString)): self.parent.ax.add_geometries([geo_obj], edgecolor=stroke, facecolor='none', crs=ccrs.PlateCarree()) elif isinstance(geo_obj, MultiPoint): for point in geo_obj.geoms: lon, lat = point.coords[0] self.parent.ax.plot(lon, lat, color=fill, marker=self.marker, transform=ccrs.PlateCarree()) elif isinstance(geo_obj, Point): lon, lat = geo_obj.coords[0] self.parent.ax.plot(lon, lat, color=fill, marker=self.marker, transform=ccrs.PlateCarree()) # Plot labels if provided if label: # If fontcolor is None/'none', choose a font color if fontcolor in [None, 'none'] and stroke not in [None, 'none']: fontcolor = stroke elif fontcolor in [None, 'none']: fontcolor = 'black' # If fontoutline is None/'none', choose a font outline if fontoutline in [None, 'none'] and fill not in [None, 'none']: fontoutline = fill elif fontoutline in [None, 'none']: fontoutline = 'white' # Choose a point along the polygon/line/point to place label lon, lat = self._position_label(geo_obj, label) # If polygon, put label directly on edge of polygon. If line or point, put # label slightly below line/point. if isinstance(geo_obj, (MultiPolygon, Polygon)): offset = (0, 0) else: offset = (0, -12) # Finally, draw the label self._draw_label(label, lon, lat, fontcolor, fontoutline, offset)