Source code for metpy.gridding.gridding_functions

# Copyright (c) 2016 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Tools and calculations for assigning values to a grid."""

from __future__ import division

import numpy as np
from scipy.interpolate import griddata, Rbf
from scipy.spatial.distance import cdist

from . import interpolation, points
from ..package_tools import Exporter

exporter = Exporter(globals())


def calc_kappa(spacing, kappa_star=5.052):
    r"""Calculate the kappa parameter for barnes interpolation.

    Parameters
    ----------
    spacing: float
        Average spacing between observations
    kappa_star: float
        Non-dimensional response parameter. Default 5.052.

    Returns
    -------
        kappa: float

    """
    return kappa_star * (2.0 * spacing / np.pi)**2


[docs]@exporter.export def remove_observations_below_value(x, y, z, val=0): r"""Remove all x, y, and z where z is less than val. Will not destroy original values. Parameters ---------- x: array_like x coordinate. y: array_like y coordinate. z: array_like Observation value. val: float Value at which to threshold z. Returns ------- x, y, z List of coordinate observation pairs without observation values less than val. """ x_ = x[z >= val] y_ = y[z >= val] z_ = z[z >= val] return x_, y_, z_
[docs]@exporter.export def remove_nan_observations(x, y, z): r"""Remove all x, y, and z where z is nan. Will not destroy original values. Parameters ---------- x: array_like x coordinate y: array_like y coordinate z: array_like observation value Returns ------- x, y, z List of coordinate observation pairs without nan valued observations. """ x_ = x[~np.isnan(z)] y_ = y[~np.isnan(z)] z_ = z[~np.isnan(z)] return x_, y_, z_
[docs]@exporter.export def remove_repeat_coordinates(x, y, z): r"""Remove all x, y, and z where (x,y) is repeated and keep the first occurrence only. Will not destroy original values. Parameters ---------- x: array_like x coordinate y: array_like y coordinate z: array_like observation value Returns ------- x, y, z List of coordinate observation pairs without repeated coordinates. """ coords = [] variable = [] for (x_, y_, t_) in zip(x, y, z): if (x_, y_) not in coords: coords.append((x_, y_)) variable.append(t_) coords = np.array(coords) x_ = coords[:, 0] y_ = coords[:, 1] z_ = np.array(variable) return x_, y_, z_
[docs]@exporter.export def interpolate(x, y, z, interp_type='linear', hres=50000, minimum_neighbors=3, gamma=0.25, kappa_star=5.052, search_radius=None, rbf_func='linear', rbf_smooth=0, boundary_coords=None): r"""Interpolate given (x,y), observation (z) pairs to a grid based on given parameters. Parameters ---------- x: array_like x coordinate y: array_like y coordinate z: array_like observation value interp_type: str What type of interpolation to use. Available options include: 1) "linear", "nearest", "cubic", or "rbf" from Scipy.interpolate. 2) "natural_neighbor", "barnes", or "cressman" from Metpy.mapping . Default "linear". hres: float The horizontal resolution of the generated grid, given in the same units as the x and y parameters. Default 50000. minimum_neighbors: int Minimum number of neighbors needed to perform barnes or cressman interpolation for a point. Default is 3. gamma: float Adjustable smoothing parameter for the barnes interpolation. Default 0.25. kappa_star: float Response parameter for barnes interpolation, specified nondimensionally in terms of the Nyquist. Default 5.052 search_radius: float A search radius to use for the barnes and cressman interpolation schemes. If search_radius is not specified, it will default to the average spacing of observations. rbf_func: str Specifies which function to use for Rbf interpolation. Options include: 'multiquadric', 'inverse', 'gaussian', 'linear', 'cubic', 'quintic', and 'thin_plate'. Defualt 'linear'. See scipy.interpolate.Rbf for more information. rbf_smooth: float Smoothing value applied to rbf interpolation. Higher values result in more smoothing. boundary_coords: dictionary Optional dictionary containing coordinates of the study area boundary. Dictionary should be in format: {'west': west, 'south': south, 'east': east, 'north': north} Returns ------- grid_x: (N, 2) ndarray Meshgrid for the resulting interpolation in the x dimension grid_y: (N, 2) ndarray Meshgrid for the resulting interpolation in the y dimension ndarray img: (M, N) ndarray 2-dimensional array representing the interpolated values for each grid. """ if boundary_coords is None: boundary_coords = points.get_boundary_coords(x, y) grid_x, grid_y = points.generate_grid(hres, boundary_coords) if interp_type in ['linear', 'nearest', 'cubic']: points_zip = np.array(list(zip(x, y))) img = griddata(points_zip, z, (grid_x, grid_y), method=interp_type) elif interp_type == 'natural_neighbor': img = interpolation.natural_neighbor(x, y, z, grid_x, grid_y) elif interp_type in ['cressman', 'barnes']: ave_spacing = np.mean((cdist(list(zip(x, y)), list(zip(x, y))))) if search_radius is None: search_radius = ave_spacing if interp_type == 'cressman': img = interpolation.inverse_distance(x, y, z, grid_x, grid_y, search_radius, min_neighbors=minimum_neighbors, kind=interp_type) else: kappa = calc_kappa(ave_spacing, kappa_star) img = interpolation.inverse_distance(x, y, z, grid_x, grid_y, search_radius, gamma, kappa, min_neighbors=minimum_neighbors, kind=interp_type) elif interp_type == 'rbf': # 3-dimensional support not yet included. # Assign a zero to each z dimension for observations. h = np.zeros((len(x))) rbfi = Rbf(x, y, h, z, function=rbf_func, smooth=rbf_smooth) # 3-dimensional support not yet included. # Assign a zero to each z dimension grid cell position. hi = np.zeros(grid_x.shape) img = rbfi(grid_x, grid_y, hi) else: raise ValueError('Interpolation option not available. ' 'Try: linear, nearest, cubic, natural_neighbor, ' 'barnes, cressman, rbf') return grid_x, grid_y, img