.. _sphx_glr_examples_plots_Hodograph_Inset.py: Hodograph Inset =============== Layout a Skew-T plot with a hodograph inset into the plot. .. code-block:: python import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy as np import pandas as pd import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import add_metpy_logo, Hodograph, SkewT from metpy.units import units Upper air data can be obtained using the siphon package, but for this example we will use some of MetPy's sample data. .. code-block:: python col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False), skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) df['u_wind'], df['v_wind'] = mpcalc.get_wind_components(df['speed'], np.deg2rad(df['direction'])) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) We will pull the data out of the example dataset into individual variables and assign units. .. code-block:: python p = df['pressure'].values * units.hPa T = df['temperature'].values * units.degC Td = df['dewpoint'].values * units.degC wind_speed = df['speed'].values * units.knots wind_dir = df['direction'].values * units.degrees u, v = mpcalc.get_wind_components(wind_speed, wind_dir) .. code-block:: python # Create a new figure. The dimensions here give a good aspect ratio fig = plt.figure(figsize=(9, 9)) add_metpy_logo(fig, 115, 100) # Grid for plots skew = SkewT(fig, rotation=45) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Good bounds for aspect ratio skew.ax.set_xlim(-50, 60) # Create a hodograph ax_hod = inset_axes(skew.ax, '40%', '40%', loc=1) h = Hodograph(ax_hod, component_range=80.) h.add_grid(increment=20) h.plot_colormapped(u, v, np.hypot(u, v)) # Show the plot plt.show() .. image:: /examples/plots/images/sphx_glr_Hodograph_Inset_001.png :align: center **Total running time of the script:** ( 0 minutes 0.515 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: Hodograph_Inset.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: Hodograph_Inset.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_