.. _sphx_glr_examples_gridding_Wind_SLP_Interpolation.py: Wind and Sea Level Pressure Interpolation ========================================= Interpolate sea level pressure, as well as wind component data, to make a consistent looking analysis, featuring contours of pressure and wind barbs. .. code-block:: python import cartopy import cartopy.crs as ccrs from matplotlib.colors import BoundaryNorm import matplotlib.pyplot as plt import numpy as np import pandas as pd from metpy.calc import get_wind_components from metpy.cbook import get_test_data from metpy.gridding.gridding_functions import interpolate, remove_nan_observations from metpy.plots import add_metpy_logo from metpy.units import units to_proj = ccrs.AlbersEqualArea(central_longitude=-97., central_latitude=38.) Read in data .. code-block:: python with get_test_data('station_data.txt') as f: data = pd.read_csv(f, header=0, usecols=(2, 3, 4, 5, 18, 19), names=['latitude', 'longitude', 'slp', 'temperature', 'wind_dir', 'wind_speed'], na_values=-99999) Project the lon/lat locations to our final projection .. code-block:: python lon = data['longitude'].values lat = data['latitude'].values xp, yp, _ = to_proj.transform_points(ccrs.Geodetic(), lon, lat).T Remove all missing data from pressure .. code-block:: python x_masked, y_masked, pres = remove_nan_observations(xp, yp, data['slp'].values) Interpolate pressure using Cressman interpolation .. code-block:: python slpgridx, slpgridy, slp = interpolate(x_masked, y_masked, pres, interp_type='cressman', minimum_neighbors=1, search_radius=400000, hres=100000) Get wind information and mask where either speed or direction is unavailable .. code-block:: python wind_speed = (data['wind_speed'].values * units('m/s')).to('knots') wind_dir = data['wind_dir'].values * units.degree good_indices = np.where((~np.isnan(wind_dir)) & (~np.isnan(wind_speed))) x_masked = xp[good_indices] y_masked = yp[good_indices] wind_speed = wind_speed[good_indices] wind_dir = wind_dir[good_indices] Calculate u and v components of wind and then interpolate both. Both will have the same underlying grid so throw away grid returned from v interpolation. .. code-block:: python u, v = get_wind_components(wind_speed, wind_dir) windgridx, windgridy, uwind = interpolate(x_masked, y_masked, np.array(u), interp_type='cressman', search_radius=400000, hres=100000) _, _, vwind = interpolate(x_masked, y_masked, np.array(v), interp_type='cressman', search_radius=400000, hres=100000) Get temperature information .. code-block:: python x_masked, y_masked, t = remove_nan_observations(xp, yp, data['temperature'].values) tempx, tempy, temp = interpolate(x_masked, y_masked, t, interp_type='cressman', minimum_neighbors=3, search_radius=400000, hres=35000) temp = np.ma.masked_where(np.isnan(temp), temp) Set up the map and plot the interpolated grids appropriately. .. code-block:: python levels = list(range(-20, 20, 1)) cmap = plt.get_cmap('viridis') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) fig = plt.figure(figsize=(20, 10)) add_metpy_logo(fig, 360, 120, size='large') view = fig.add_subplot(1, 1, 1, projection=to_proj) view.set_extent([-120, -70, 20, 50]) view.add_feature(cartopy.feature.NaturalEarthFeature(category='cultural', name='admin_1_states_provinces_lakes', scale='50m', facecolor='none')) view.add_feature(cartopy.feature.OCEAN) view.add_feature(cartopy.feature.COASTLINE) view.add_feature(cartopy.feature.BORDERS, linestyle=':') cs = view.contour(slpgridx, slpgridy, slp, colors='k', levels=list(range(990, 1034, 4))) plt.clabel(cs, inline=1, fontsize=12, fmt='%i') mmb = view.pcolormesh(tempx, tempy, temp, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0.02, boundaries=levels) view.barbs(windgridx, windgridy, uwind, vwind, alpha=.4, length=5) plt.title('Surface Temperature (shaded), SLP, and Wind.') plt.show() .. image:: /examples/gridding/images/sphx_glr_Wind_SLP_Interpolation_001.png :align: center **Total running time of the script:** ( 0 minutes 2.097 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: Wind_SLP_Interpolation.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: Wind_SLP_Interpolation.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_