.. _sphx_glr_examples_gridding_Point_Interpolation.py: Point Interpolation =================== Compares different point interpolation approaches. .. code-block:: python import cartopy import cartopy.crs as ccrs from matplotlib.colors import BoundaryNorm import matplotlib.pyplot as plt import numpy as np from metpy.cbook import get_test_data from metpy.gridding.gridding_functions import (interpolate, remove_nan_observations, remove_repeat_coordinates) .. code-block:: python from metpy.plots import add_metpy_logo def basic_map(proj): """Make our basic default map for plotting""" fig = plt.figure(figsize=(15, 10)) add_metpy_logo(fig, 0, 80, size='large') view = fig.add_axes([0, 0, 1, 1], projection=proj) view.set_extent([-120, -70, 20, 50]) view.add_feature(cartopy.feature.NaturalEarthFeature(category='cultural', name='admin_1_states_provinces_lakes', scale='50m', facecolor='none')) view.add_feature(cartopy.feature.OCEAN) view.add_feature(cartopy.feature.COASTLINE) view.add_feature(cartopy.feature.BORDERS, linestyle=':') return view def station_test_data(variable_names, proj_from=None, proj_to=None): with get_test_data('station_data.txt') as f: all_data = np.loadtxt(f, skiprows=1, delimiter=',', usecols=(1, 2, 3, 4, 5, 6, 7, 17, 18, 19), dtype=np.dtype([('stid', '3S'), ('lat', 'f'), ('lon', 'f'), ('slp', 'f'), ('air_temperature', 'f'), ('cloud_fraction', 'f'), ('dewpoint', 'f'), ('weather', '16S'), ('wind_dir', 'f'), ('wind_speed', 'f')])) all_stids = [s.decode('ascii') for s in all_data['stid']] data = np.concatenate([all_data[all_stids.index(site)].reshape(1, ) for site in all_stids]) value = data[variable_names] lon = data['lon'] lat = data['lat'] if proj_from is not None and proj_to is not None: try: proj_points = proj_to.transform_points(proj_from, lon, lat) return proj_points[:, 0], proj_points[:, 1], value except Exception as e: print(e) return None return lon, lat, value from_proj = ccrs.Geodetic() to_proj = ccrs.AlbersEqualArea(central_longitude=-97.0000, central_latitude=38.0000) levels = list(range(-20, 20, 1)) cmap = plt.get_cmap('magma') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) x, y, temp = station_test_data('air_temperature', from_proj, to_proj) x, y, temp = remove_nan_observations(x, y, temp) x, y, temp = remove_repeat_coordinates(x, y, temp) Scipy.interpolate linear ------------------------ .. code-block:: python gx, gy, img = interpolate(x, y, temp, interp_type='linear', hres=75000) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) .. image:: /examples/gridding/images/sphx_glr_Point_Interpolation_001.png :align: center Natural neighbor interpolation (MetPy implementation) ----------------------------------------------------- `Reference `_ .. code-block:: python gx, gy, img = interpolate(x, y, temp, interp_type='natural_neighbor', hres=75000) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) .. image:: /examples/gridding/images/sphx_glr_Point_Interpolation_002.png :align: center Cressman interpolation ---------------------- search_radius = 100 km grid resolution = 25 km min_neighbors = 1 .. code-block:: python gx, gy, img = interpolate(x, y, temp, interp_type='cressman', minimum_neighbors=1, hres=75000, search_radius=100000) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) .. image:: /examples/gridding/images/sphx_glr_Point_Interpolation_003.png :align: center Barnes Interpolation -------------------- search_radius = 100km min_neighbors = 3 .. code-block:: python gx, gy, img1 = interpolate(x, y, temp, interp_type='barnes', hres=75000, search_radius=100000) img1 = np.ma.masked_where(np.isnan(img1), img1) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img1, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) .. image:: /examples/gridding/images/sphx_glr_Point_Interpolation_004.png :align: center Radial basis function interpolation ------------------------------------ linear .. code-block:: python gx, gy, img = interpolate(x, y, temp, interp_type='rbf', hres=75000, rbf_func='linear', rbf_smooth=0) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) plt.show() .. image:: /examples/gridding/images/sphx_glr_Point_Interpolation_005.png :align: center **Total running time of the script:** ( 0 minutes 53.352 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: Point_Interpolation.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: Point_Interpolation.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_