.. _sphx_glr_examples_Advanced_Sounding.py: ================= Advanced Sounding ================= Plot a sounding using MetPy with more advanced features. Beyond just plotting data, this uses calculations from `metpy.calc` to find the lifted condensation level (LCL) and the profile of a surface-based parcel. The area between the ambient profile and the parcel profile is colored as well. .. code-block:: python import matplotlib.pyplot as plt import numpy as np import pandas as pd import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import add_metpy_logo, SkewT from metpy.units import units Upper air data can be obtained using the siphon package, but for this example we will use some of MetPy's sample data. .. code-block:: python col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False), skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) df['u_wind'], df['v_wind'] = mpcalc.get_wind_components(df['speed'], np.deg2rad(df['direction'])) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) We will pull the data out of the example dataset into individual variables and assign units. .. code-block:: python p = df['pressure'].values * units.hPa T = df['temperature'].values * units.degC Td = df['dewpoint'].values * units.degC wind_speed = df['speed'].values * units.knots wind_dir = df['direction'].values * units.degrees u, v = mpcalc.get_wind_components(wind_speed, wind_dir) Create a new figure. The dimensions here give a good aspect ratio. .. code-block:: python fig = plt.figure(figsize=(9, 9)) add_metpy_logo(fig, 115, 100) skew = SkewT(fig, rotation=45) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) skew.ax.set_xlim(-40, 60) # Calculate LCL height and plot as black dot lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0]) skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black') # Calculate full parcel profile and add to plot as black line prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') skew.plot(p, prof, 'k', linewidth=2) # Shade areas of CAPE and CIN skew.shade_cin(p, T, prof) skew.shade_cape(p, T, prof) # An example of a slanted line at constant T -- in this case the 0 # isotherm skew.ax.axvline(0, color='c', linestyle='--', linewidth=2) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Show the plot plt.show() .. image:: /examples/images/sphx_glr_Advanced_Sounding_001.png :align: center **Total running time of the script:** ( 0 minutes 1.780 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: Advanced_Sounding.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: Advanced_Sounding.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_