# Copyright (c) 2014,2015,2016,2017 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Make Skew-T Log-P based plots.
Contain tools for making Skew-T Log-P plots, including the base plotting class,
`SkewT`, as well as a class for making a `Hodograph`.
"""
import matplotlib
from matplotlib.axes import Axes
import matplotlib.axis as maxis
from matplotlib.collections import LineCollection
import matplotlib.colors as mcolors
from matplotlib.patches import Circle
from matplotlib.projections import register_projection
import matplotlib.spines as mspines
from matplotlib.ticker import MultipleLocator, NullFormatter, ScalarFormatter
import matplotlib.transforms as transforms
import numpy as np
from ._util import colored_line
from ..calc import dewpoint, dry_lapse, moist_lapse, vapor_pressure
from ..calc.tools import delete_masked_points, interp
from ..package_tools import Exporter
from ..units import concatenate, units
exporter = Exporter(globals())
class SkewXTick(maxis.XTick):
r"""Make x-axis ticks for Skew-T plots.
This class adds to the standard :class:`matplotlib.axis.XTick` dynamic checking
for whether a top or bottom tick is actually within the data limits at that part
and draw as appropriate. It also performs similar checking for gridlines.
"""
def update_position(self, loc):
"""Set the location of tick in data coords with scalar *loc*."""
# This ensures that the new value of the location is set before
# any other updates take place.
self._loc = loc
super(SkewXTick, self).update_position(loc)
def _has_default_loc(self):
return self.get_loc() is None
def _need_lower(self):
return (self._has_default_loc() or
transforms.interval_contains(self.axes.lower_xlim,
self.get_loc()))
def _need_upper(self):
return (self._has_default_loc() or
transforms.interval_contains(self.axes.upper_xlim,
self.get_loc()))
@property
def gridOn(self): # noqa: N802
"""Control whether the gridline is drawn for this tick."""
return (self._gridOn and (self._has_default_loc() or
transforms.interval_contains(self.get_view_interval(),
self.get_loc())))
@gridOn.setter
def gridOn(self, value): # noqa: N802
self._gridOn = value
@property
def tick1On(self): # noqa: N802
"""Control whether the lower tick mark is drawn for this tick."""
return self._tick1On and self._need_lower()
@tick1On.setter
def tick1On(self, value): # noqa: N802
self._tick1On = value
@property
def label1On(self): # noqa: N802
"""Control whether the lower tick label is drawn for this tick."""
return self._label1On and self._need_lower()
@label1On.setter
def label1On(self, value): # noqa: N802
self._label1On = value
@property
def tick2On(self): # noqa: N802
"""Control whether the upper tick mark is drawn for this tick."""
return self._tick2On and self._need_upper()
@tick2On.setter
def tick2On(self, value): # noqa: N802
self._tick2On = value
@property
def label2On(self): # noqa: N802
"""Control whether the upper tick label is drawn for this tick."""
return self._label2On and self._need_upper()
@label2On.setter
def label2On(self, value): # noqa: N802
self._label2On = value
def get_view_interval(self):
"""Get the view interval."""
return self.axes.xaxis.get_view_interval()
class SkewXAxis(maxis.XAxis):
r"""Make an x-axis that works properly for Skew-T plots.
This class exists to force the use of our custom :class:`SkewXTick` as well
as provide a custom value for interview that combines the extents of the
upper and lower x-limits from the axes.
"""
def _get_tick(self, major):
return SkewXTick(self.axes, None, '', major=major)
def get_view_interval(self):
"""Get the view interval."""
return self.axes.upper_xlim[0], self.axes.lower_xlim[1]
class SkewSpine(mspines.Spine):
r"""Make an x-axis spine that works properly for Skew-T plots.
This class exists to use the separate x-limits from the axes to properly
locate the spine.
"""
def _adjust_location(self):
pts = self._path.vertices
if self.spine_type == 'top':
pts[:, 0] = self.axes.upper_xlim
else:
pts[:, 0] = self.axes.lower_xlim
class SkewXAxes(Axes):
r"""Make a set of axes for Skew-T plots.
This class handles registration of the skew-xaxes as a projection as well as setting up
the appropriate transformations. It also makes sure we use our instances for spines
and x-axis: :class:`SkewSpine` and :class:`SkewXAxis`. It provides properties to
facilitate finding the x-limits for the bottom and top of the plot as well.
"""
# The projection must specify a name. This will be used be the
# user to select the projection, i.e. ``subplot(111,
# projection='skewx')``.
name = 'skewx'
def __init__(self, *args, **kwargs):
r"""Initialize `SkewXAxes`.
Parameters
----------
args : Arbitrary positional arguments
Passed to :class:`matplotlib.axes.Axes`
position: int, optional
The rotation of the x-axis against the y-axis, in degrees.
kwargs : Arbitrary keyword arguments
Passed to :class:`matplotlib.axes.Axes`
"""
# This needs to be popped and set before moving on
self.rot = kwargs.pop('rotation', 30)
Axes.__init__(self, *args, **kwargs)
def _init_axis(self):
# Taken from Axes and modified to use our modified X-axis
self.xaxis = SkewXAxis(self)
self.spines['top'].register_axis(self.xaxis)
self.spines['bottom'].register_axis(self.xaxis)
self.yaxis = maxis.YAxis(self)
self.spines['left'].register_axis(self.yaxis)
self.spines['right'].register_axis(self.yaxis)
def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'):
# pylint: disable=unused-argument
spines = {'top': SkewSpine.linear_spine(self, 'top'),
'bottom': mspines.Spine.linear_spine(self, 'bottom'),
'left': mspines.Spine.linear_spine(self, 'left'),
'right': mspines.Spine.linear_spine(self, 'right')}
return spines
def _set_lim_and_transforms(self):
"""Set limits and transforms.
This is called once when the plot is created to set up all the
transforms for the data, text and grids.
"""
# Get the standard transform setup from the Axes base class
Axes._set_lim_and_transforms(self)
# Need to put the skew in the middle, after the scale and limits,
# but before the transAxes. This way, the skew is done in Axes
# coordinates thus performing the transform around the proper origin
# We keep the pre-transAxes transform around for other users, like the
# spines for finding bounds
self.transDataToAxes = (self.transScale +
(self.transLimits +
transforms.Affine2D().skew_deg(self.rot, 0)))
# Create the full transform from Data to Pixels
self.transData = self.transDataToAxes + self.transAxes
# Blended transforms like this need to have the skewing applied using
# both axes, in axes coords like before.
self._xaxis_transform = (transforms.blended_transform_factory(
self.transScale + self.transLimits,
transforms.IdentityTransform()) +
transforms.Affine2D().skew_deg(self.rot, 0)) + self.transAxes
@property
def lower_xlim(self):
"""Get the data limits for the x-axis along the bottom of the axes."""
return self.axes.viewLim.intervalx
@property
def upper_xlim(self):
"""Get the data limits for the x-axis along the top of the axes."""
return self.transDataToAxes.inverted().transform([[0., 1.], [1., 1.]])[:, 0]
# Now register the projection with matplotlib so the user can select
# it.
register_projection(SkewXAxes)
[docs]@exporter.export
class SkewT(object):
r"""Make Skew-T log-P plots of data.
This class simplifies the process of creating Skew-T log-P plots in
using matplotlib. It handles requesting the appropriate skewed projection,
and provides simplified wrappers to make it easy to plot data, add wind
barbs, and add other lines to the plots (e.g. dry adiabats)
Attributes
----------
ax : `matplotlib.axes.Axes`
The underlying Axes instance, which can be used for calling additional
plot functions (e.g. `axvline`)
"""
[docs] def __init__(self, fig=None, rotation=30, subplot=(1, 1, 1)):
r"""Create SkewT - logP plots.
Parameters
----------
fig : matplotlib.figure.Figure, optional
Source figure to use for plotting. If none is given, a new
:class:`matplotlib.figure.Figure` instance will be created.
rotation : float or int, optional
Controls the rotation of temperature relative to horizontal. Given
in degrees counterclockwise from x-axis. Defaults to 30 degrees.
subplot : tuple[int, int, int] or `matplotlib.gridspec.SubplotSpec` instance, optional
Controls the size/position of the created subplot. This allows creating
the skewT as part of a collection of subplots. If subplot is a tuple, it
should conform to the specification used for
:meth:`matplotlib.figure.Figure.add_subplot`. The
:class:`matplotlib.gridspec.SubplotSpec`
can be created by using :class:`matplotlib.gridspec.GridSpec`.
"""
if fig is None:
import matplotlib.pyplot as plt
figsize = plt.rcParams.get('figure.figsize', (7, 7))
fig = plt.figure(figsize=figsize)
self._fig = fig
# Handle being passed a tuple for the subplot, or a GridSpec instance
try:
len(subplot)
except TypeError:
subplot = (subplot,)
self.ax = fig.add_subplot(*subplot, projection='skewx', rotation=rotation)
self.ax.grid(True)
[docs] def plot(self, p, t, *args, **kwargs):
r"""Plot data.
Simple wrapper around plot so that pressure is the first (independent)
input. This is essentially a wrapper around `semilogy`. It also
sets some appropriate ticking and plot ranges.
Parameters
----------
p : array_like
pressure values
t : array_like
temperature values, can also be used for things like dew point
args
Other positional arguments to pass to :func:`~matplotlib.pyplot.semilogy`
kwargs
Other keyword arguments to pass to :func:`~matplotlib.pyplot.semilogy`
Returns
-------
list[matplotlib.lines.Line2D]
lines plotted
See Also
--------
:func:`matplotlib.pyplot.semilogy`
"""
# Skew-T logP plotting
t, p = delete_masked_points(t, p)
lines = self.ax.semilogy(t, p, *args, **kwargs)
# Disables the log-formatting that comes with semilogy
self.ax.yaxis.set_major_formatter(ScalarFormatter())
self.ax.yaxis.set_major_locator(MultipleLocator(100))
self.ax.yaxis.set_minor_formatter(NullFormatter())
if not self.ax.yaxis_inverted():
self.ax.invert_yaxis()
# Try to make sane default temperature plotting
self.ax.xaxis.set_major_locator(MultipleLocator(10))
return lines
[docs] def plot_barbs(self, p, u, v, c=None, xloc=1.0, x_clip_radius=0.08,
y_clip_radius=0.08, **kwargs):
r"""Plot wind barbs.
Adds wind barbs to the skew-T plot. This is a wrapper around the
`barbs` command that adds to appropriate transform to place the
barbs in a vertical line, located as a function of pressure.
Parameters
----------
p : array_like
pressure values
u : array_like
U (East-West) component of wind
v : array_like
V (North-South) component of wind
c:
An optional array used to map colors to the barbs
xloc : float, optional
Position for the barbs, in normalized axes coordinates, where 0.0
denotes far left and 1.0 denotes far right. Defaults to far right.
x_clip_radius : float, optional
Space, in normalized axes coordinates, to leave before clipping
wind barbs in the x-direction. Defaults to 0.08.
y_clip_radius : float, optional
Space, in normalized axes coordinates, to leave above/below plot
before clipping wind barbs in the y-direction. Defaults to 0.08.
kwargs
Other keyword arguments to pass to :func:`~matplotlib.pyplot.barbs`
Returns
-------
matplotlib.quiver.Barbs
instance created
See Also
--------
:func:`matplotlib.pyplot.barbs`
"""
# Assemble array of x-locations in axes space
x = np.empty_like(p)
x.fill(xloc)
# Do barbs plot at this location
if c is not None:
b = self.ax.barbs(x, p, u, v, c,
transform=self.ax.get_yaxis_transform(which='tick2'),
clip_on=True, **kwargs)
else:
b = self.ax.barbs(x, p, u, v,
transform=self.ax.get_yaxis_transform(which='tick2'),
clip_on=True, **kwargs)
# Override the default clip box, which is the axes rectangle, so we can have
# barbs that extend outside.
ax_bbox = transforms.Bbox([[xloc - x_clip_radius, -y_clip_radius],
[xloc + x_clip_radius, 1.0 + y_clip_radius]])
b.set_clip_box(transforms.TransformedBbox(ax_bbox, self.ax.transAxes))
return b
[docs] def plot_dry_adiabats(self, t0=None, p=None, **kwargs):
r"""Plot dry adiabats.
Adds dry adiabats (lines of constant potential temperature) to the
plot. The default style of these lines is dashed red lines with an alpha
value of 0.5. These can be overridden using keyword arguments.
Parameters
----------
t0 : array_like, optional
Starting temperature values in Kelvin. If none are given, they will be
generated using the current temperature range at the bottom of
the plot.
p : array_like, optional
Pressure values to be included in the dry adiabats. If not
specified, they will be linearly distributed across the current
plotted pressure range.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:func:`~metpy.calc.thermo.dry_lapse`
:meth:`plot_moist_adiabats`
:class:`matplotlib.collections.LineCollection`
"""
# Determine set of starting temps if necessary
if t0 is None:
xmin, xmax = self.ax.get_xlim()
t0 = np.arange(xmin, xmax + 1, 10) * units.degC
# Get pressure levels based on ylims if necessary
if p is None:
p = np.linspace(*self.ax.get_ylim()) * units.mbar
# Assemble into data for plotting
t = dry_lapse(p, t0[:, np.newaxis]).to(units.degC)
linedata = [np.vstack((ti, p)).T for ti in t]
# Add to plot
kwargs.setdefault('colors', 'r')
kwargs.setdefault('linestyles', 'dashed')
kwargs.setdefault('alpha', 0.5)
return self.ax.add_collection(LineCollection(linedata, **kwargs))
[docs] def plot_moist_adiabats(self, t0=None, p=None, **kwargs):
r"""Plot moist adiabats.
Adds saturated pseudo-adiabats (lines of constant equivalent potential
temperature) to the plot. The default style of these lines is dashed
blue lines with an alpha value of 0.5. These can be overridden using
keyword arguments.
Parameters
----------
t0 : array_like, optional
Starting temperature values in Kelvin. If none are given, they will be
generated using the current temperature range at the bottom of
the plot.
p : array_like, optional
Pressure values to be included in the moist adiabats. If not
specified, they will be linearly distributed across the current
plotted pressure range.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:func:`~metpy.calc.thermo.moist_lapse`
:meth:`plot_dry_adiabats`
:class:`matplotlib.collections.LineCollection`
"""
# Determine set of starting temps if necessary
if t0 is None:
xmin, xmax = self.ax.get_xlim()
t0 = np.concatenate((np.arange(xmin, 0, 10),
np.arange(0, xmax + 1, 5))) * units.degC
# Get pressure levels based on ylims if necessary
if p is None:
p = np.linspace(*self.ax.get_ylim()) * units.mbar
# Assemble into data for plotting
t = moist_lapse(p, t0[:, np.newaxis]).to(units.degC)
linedata = [np.vstack((ti, p)).T for ti in t]
# Add to plot
kwargs.setdefault('colors', 'b')
kwargs.setdefault('linestyles', 'dashed')
kwargs.setdefault('alpha', 0.5)
return self.ax.add_collection(LineCollection(linedata, **kwargs))
[docs] def plot_mixing_lines(self, w=None, p=None, **kwargs):
r"""Plot lines of constant mixing ratio.
Adds lines of constant mixing ratio (isohumes) to the
plot. The default style of these lines is dashed green lines with an
alpha value of 0.8. These can be overridden using keyword arguments.
Parameters
----------
w : array_like, optional
Unitless mixing ratio values to plot. If none are given, default
values are used.
p : array_like, optional
Pressure values to be included in the isohumes. If not
specified, they will be linearly distributed across the current
plotted pressure range up to 600 mb.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:class:`matplotlib.collections.LineCollection`
"""
# Default mixing level values if necessary
if w is None:
w = np.array([0.0004, 0.001, 0.002, 0.004, 0.007, 0.01,
0.016, 0.024, 0.032]).reshape(-1, 1)
# Set pressure range if necessary
if p is None:
p = np.linspace(600, max(self.ax.get_ylim())) * units.mbar
# Assemble data for plotting
td = dewpoint(vapor_pressure(p, w))
linedata = [np.vstack((t, p)).T for t in td]
# Add to plot
kwargs.setdefault('colors', 'g')
kwargs.setdefault('linestyles', 'dashed')
kwargs.setdefault('alpha', 0.8)
return self.ax.add_collection(LineCollection(linedata, **kwargs))
[docs] def shade_area(self, y, x1, x2=0, which='both', **kwargs):
r"""Shade area between two curves.
Shades areas between curves. Area can be where one is greater or less than the other
or all areas shaded.
Parameters
----------
y : array_like
1-dimensional array of numeric y-values
x1 : array_like
1-dimensional array of numeric x-values
x2 : array_like
1-dimensional array of numeric x-values
which : string
Specifies if `positive`, `negative`, or `both` areas are being shaded.
Will be overridden by where.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.PolyCollection`
Returns
-------
:class:`matplotlib.collections.PolyCollection`
See Also
--------
:class:`matplotlib.collections.PolyCollection`
:func:`matplotlib.axes.Axes.fill_betweenx`
"""
fill_properties = {'positive':
{'facecolor': 'tab:red', 'alpha': 0.4, 'where': x1 > x2},
'negative':
{'facecolor': 'tab:blue', 'alpha': 0.4, 'where': x1 < x2},
'both':
{'facecolor': 'tab:green', 'alpha': 0.4, 'where': None}}
try:
fill_args = fill_properties[which]
fill_args.update(kwargs)
except KeyError:
raise ValueError('Unknown option for which: {0}'.format(str(which)))
arrs = y, x1, x2
if fill_args['where'] is not None:
arrs = arrs + (fill_args['where'],)
fill_args.pop('where', None)
if matplotlib.__version__ >= '2.1':
fill_args['interpolate'] = True
arrs = delete_masked_points(*arrs)
return self.ax.fill_betweenx(*arrs, **fill_args)
[docs] def shade_cape(self, p, t, t_parcel, **kwargs):
r"""Shade areas of CAPE.
Shades areas where the parcel is warmer than the environment (areas of positive
buoyancy.
Parameters
----------
p : array_like
Pressure values
t : array_like
Temperature values
t_parcel : array_like
Parcel path temperature values
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.PolyCollection`
Returns
-------
:class:`matplotlib.collections.PolyCollection`
See Also
--------
:class:`matplotlib.collections.PolyCollection`
:func:`matplotlib.axes.Axes.fill_betweenx`
"""
return self.shade_area(p, t_parcel, t, which='positive', **kwargs)
[docs] def shade_cin(self, p, t, t_parcel, **kwargs):
r"""Shade areas of CIN.
Shades areas where the parcel is cooler than the environment (areas of negative
buoyancy.
Parameters
----------
p : array_like
Pressure values
t : array_like
Temperature values
t_parcel : array_like
Parcel path temperature values
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.PolyCollection`
Returns
-------
:class:`matplotlib.collections.PolyCollection`
See Also
--------
:class:`matplotlib.collections.PolyCollection`
:func:`matplotlib.axes.Axes.fill_betweenx`
"""
return self.shade_area(p, t_parcel, t, which='negative', **kwargs)
[docs]@exporter.export
class Hodograph(object):
r"""Make a hodograph of wind data.
Plots the u and v components of the wind along the x and y axes, respectively.
This class simplifies the process of creating a hodograph using matplotlib.
It provides helpers for creating a circular grid and for plotting the wind as a line
colored by another value (such as wind speed).
Attributes
----------
ax : `matplotlib.axes.Axes`
The underlying Axes instance used for all plotting
"""
[docs] def __init__(self, ax=None, component_range=80):
r"""Create a Hodograph instance.
Parameters
----------
ax : `matplotlib.axes.Axes`, optional
The `Axes` instance used for plotting
component_range : value
The maximum range of the plot. Used to set plot bounds and control the maximum
number of grid rings needed.
"""
if ax is None:
import matplotlib.pyplot as plt
self.ax = plt.figure().add_subplot(1, 1, 1)
else:
self.ax = ax
self.ax.set_aspect('equal', 'box')
self.ax.set_xlim(-component_range, component_range)
self.ax.set_ylim(-component_range, component_range)
# == sqrt(2) * max_range, which is the distance at the corner
self.max_range = 1.4142135 * component_range
[docs] def add_grid(self, increment=10., **kwargs):
r"""Add grid lines to hodograph.
Creates lines for the x- and y-axes, as well as circles denoting wind speed values.
Parameters
----------
increment : value, optional
The value increment between rings
kwargs
Other kwargs to control appearance of lines
See Also
--------
:class:`matplotlib.patches.Circle`
:meth:`matplotlib.axes.Axes.axhline`
:meth:`matplotlib.axes.Axes.axvline`
"""
# Some default arguments. Take those, and update with any
# arguments passed in
grid_args = {'color': 'grey', 'linestyle': 'dashed'}
if kwargs:
grid_args.update(kwargs)
# Take those args and make appropriate for a Circle
circle_args = grid_args.copy()
color = circle_args.pop('color', None)
circle_args['edgecolor'] = color
circle_args['fill'] = False
self.rings = []
for r in np.arange(increment, self.max_range, increment):
c = Circle((0, 0), radius=r, **circle_args)
self.ax.add_patch(c)
self.rings.append(c)
# Add lines for x=0 and y=0
self.yaxis = self.ax.axvline(0, **grid_args)
self.xaxis = self.ax.axhline(0, **grid_args)
@staticmethod
def _form_line_args(kwargs):
"""Simplify taking the default line style and extending with kwargs."""
def_args = {'linewidth': 3}
def_args.update(kwargs)
return def_args
[docs] def plot(self, u, v, **kwargs):
r"""Plot u, v data.
Plots the wind data on the hodograph.
Parameters
----------
u : array_like
u-component of wind
v : array_like
v-component of wind
kwargs
Other keyword arguments to pass to :meth:`matplotlib.axes.Axes.plot`
Returns
-------
list[matplotlib.lines.Line2D]
lines plotted
See Also
--------
:meth:`Hodograph.plot_colormapped`
"""
line_args = self._form_line_args(kwargs)
u, v = delete_masked_points(u, v)
return self.ax.plot(u, v, **line_args)
[docs] def plot_colormapped(self, u, v, c, bounds=None, colors=None, **kwargs):
r"""Plot u, v data, with line colored based on a third set of data.
Plots the wind data on the hodograph, but with a colormapped line. Takes a third
variable besides the winds and either a colormap to color it with or a series of
bounds and colors to create a colormap and norm to control colormapping.
The bounds must always be in increasing order. For using custom bounds with
height data, the function will automatically interpolate to the actual bounds from the
height and wind data, as well as convert the input bounds from
height AGL to height above MSL to work with the provided heights.
Simple wrapper around plot so that pressure is the first (independent)
input. This is essentially a wrapper around `semilogy`. It also
sets some appropriate ticking and plot ranges.
Parameters
----------
u : array_like
u-component of wind
v : array_like
v-component of wind
c : array_like
data to use for colormapping
bounds: array-like, optional
Array of bounds for c to use in coloring the hodograph.
colors: list, optional
Array of strings representing colors for the hodograph segments.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:meth:`Hodograph.plot`
"""
u, v, c = delete_masked_points(u, v, c)
# Plotting a color segmented hodograph
if colors:
cmap = mcolors.ListedColormap(colors)
# If we are segmenting by height (a length), interpolate the bounds
if bounds.dimensionality == {'[length]': 1.0}:
bounds = bounds + c[0] # Make all heights AGL
interpolation_heights = concatenate((bounds, c))
interpolation_heights = (np.sort(interpolation_heights) *
interpolation_heights.units)
c, u, v = interp(interpolation_heights, c, c, u, v)
c = c.to_base_units() # TODO: This shouldn't be required!
# If segmenting by anything else, do not interpolate, just use the data
else:
bounds = np.asarray(bounds) * bounds.units
norm = mcolors.BoundaryNorm(bounds.magnitude, cmap.N)
cmap.set_over('none')
cmap.set_under('none')
kwargs['cmap'] = cmap
kwargs['norm'] = norm
line_args = self._form_line_args(kwargs)
# Plotting a continuously colored line
else:
line_args = self._form_line_args(kwargs)
# Do the plotting
lc = colored_line(u, v, c, **line_args)
self.ax.add_collection(lc)
return lc