Source code for metpy.calc.kinematics

# Copyright (c) 2009,2017 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Contains calculation of kinematic parameters (e.g. divergence or vorticity)."""
from __future__ import division

import functools
import warnings

import numpy as np

from ..calc.tools import get_layer_heights
from ..cbook import is_string_like, iterable
from ..constants import Cp_d, g
from ..package_tools import Exporter
from ..units import atleast_2d, check_units, concatenate, units

exporter = Exporter(globals())


def _gradient(f, *args, **kwargs):
    """Wrap :func:`numpy.gradient` to handle units."""
    if len(args) < f.ndim:
        args = list(args)
        args.extend([units.Quantity(1., 'dimensionless')] * (f.ndim - len(args)))
    grad = np.gradient(f, *(a.magnitude for a in args), **kwargs)
    if f.ndim == 1:
        return units.Quantity(grad, f.units / args[0].units)
    return [units.Quantity(g, f.units / dx.units) for dx, g in zip(args, grad)]


def _stack(arrs):
    return concatenate([a[np.newaxis] for a in arrs], axis=0)


def _get_gradients(u, v, dx, dy):
    """Return derivatives for components to simplify calculating convergence and vorticity."""
    dudy, dudx = _gradient(u, dy, dx)
    dvdy, dvdx = _gradient(v, dy, dx)
    return dudx, dudy, dvdx, dvdy


def _is_x_first_dim(dim_order):
    """Determine whether x is the first dimension based on the value of dim_order."""
    if dim_order is None:
        warnings.warn('dim_order is using the default setting (currently "xy"). This will '
                      'change to "yx" in the next version. It is recommended that you '
                      'specify the appropriate ordering ("xy", "yx") for your data by '
                      'passing the `dim_order` argument to the calculation.', FutureWarning)
        dim_order = 'xy'
    return dim_order == 'xy'


def _check_and_flip(arr):
    """Transpose array or list of arrays if they are 2D."""
    if hasattr(arr, 'ndim'):
        if arr.ndim >= 2:
            return arr.T
        else:
            return arr
    elif not is_string_like(arr) and iterable(arr):
        return tuple(_check_and_flip(a) for a in arr)
    else:
        return arr


def ensure_yx_order(func):
    """Wrap a function to ensure all array arguments are y, x ordered, based on kwarg."""
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        # Check what order we're given
        dim_order = kwargs.pop('dim_order', None)
        x_first = _is_x_first_dim(dim_order)

        # If x is the first dimension, flip (transpose) every array within the function args.
        if x_first:
            args = tuple(_check_and_flip(arr) for arr in args)
            for k, v in kwargs:
                kwargs[k] = _check_and_flip(v)

        ret = func(*args, **kwargs)

        # If we flipped on the way in, need to flip on the way out so that output array(s)
        # match the dimension order of the original input.
        if x_first:
            return _check_and_flip(ret)
        else:
            return ret

    # Inject a docstring for the dim_order argument into the function's docstring.
    dim_order_doc = """
    dim_order : str or ``None``, optional
        The ordering of dimensions in passed in arrays. Can be one of ``None``, ``'xy'``,
        or ``'yx'``. ``'xy'`` indicates that the dimension corresponding to x is the leading
        dimension, followed by y. ``'yx'`` indicates that x is the last dimension, preceded
        by y. ``None`` indicates that the default ordering should be assumed,
        which will change in version 0.6 from 'xy' to 'yx'. Can only be passed as a keyword
        argument, i.e. func(..., dim_order='xy')."""

    # Find the first blank line after the start of the parameters section
    params = wrapper.__doc__.find('Parameters')
    blank = wrapper.__doc__.find('\n\n', params)
    wrapper.__doc__ = wrapper.__doc__[:blank] + dim_order_doc + wrapper.__doc__[blank:]

    return wrapper


[docs]@exporter.export @ensure_yx_order def v_vorticity(u, v, dx, dy): r"""Calculate the vertical vorticity of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- (M, N) ndarray vertical vorticity See Also -------- h_convergence, convergence_vorticity """ _, dudy, dvdx, _ = _get_gradients(u, v, dx, dy) return dvdx - dudy
[docs]@exporter.export @ensure_yx_order def h_convergence(u, v, dx, dy): r"""Calculate the horizontal convergence of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- (M, N) ndarray The horizontal convergence See Also -------- v_vorticity, convergence_vorticity """ dudx, _, _, dvdy = _get_gradients(u, v, dx, dy) return dudx + dvdy
[docs]@exporter.export @ensure_yx_order def convergence_vorticity(u, v, dx, dy): r"""Calculate the horizontal convergence and vertical vorticity of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- convergence, vorticity : tuple of (M, N) ndarrays The horizontal convergence and vertical vorticity, respectively See Also -------- v_vorticity, h_convergence Notes ----- This is a convenience function that will do less work than calculating the horizontal convergence and vertical vorticity separately. """ dudx, dudy, dvdx, dvdy = _get_gradients(u, v, dx, dy) return dudx + dvdy, dvdx - dudy
[docs]@exporter.export @ensure_yx_order def shearing_deformation(u, v, dx, dy): r"""Calculate the shearing deformation of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- (M, N) ndarray Shearing Deformation See Also -------- stretching_convergence, shearing_stretching_deformation """ _, dudy, dvdx, _ = _get_gradients(u, v, dx, dy) return dvdx + dudy
[docs]@exporter.export @ensure_yx_order def stretching_deformation(u, v, dx, dy): r"""Calculate the stretching deformation of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- (M, N) ndarray Stretching Deformation See Also -------- shearing_deformation, shearing_stretching_deformation """ dudx, _, _, dvdy = _get_gradients(u, v, dx, dy) return dudx - dvdy
[docs]@exporter.export @ensure_yx_order def shearing_stretching_deformation(u, v, dx, dy): r"""Calculate the horizontal shearing and stretching deformation of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- shearing, strectching : tuple of (M, N) ndarrays The horizontal shearing and stretching deformation, respectively See Also -------- shearing_deformation, stretching_deformation Notes ----- This is a convenience function that will do less work than calculating the shearing and streching deformation terms separately. """ dudx, dudy, dvdx, dvdy = _get_gradients(u, v, dx, dy) return dvdx + dudy, dudx - dvdy
[docs]@exporter.export @ensure_yx_order def total_deformation(u, v, dx, dy): r"""Calculate the horizontal total deformation of the horizontal wind. The grid must have a constant spacing in each direction. Parameters ---------- u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- (M, N) ndarray Total Deformation See Also -------- shearing_deformation, stretching_deformation, shearing_stretching_deformation Notes ----- This is a convenience function that will do less work than calculating the shearing and streching deformation terms separately and calculating the total deformation "by hand". """ dudx, dudy, dvdx, dvdy = _get_gradients(u, v, dx, dy) return np.sqrt((dvdx + dudy)**2 + (dudx - dvdy)**2)
[docs]@exporter.export @ensure_yx_order def advection(scalar, wind, deltas): r"""Calculate the advection of a scalar field by the wind. The order of the dimensions of the arrays must match the order in which the wind components are given. For example, if the winds are given [u, v], then the scalar and wind arrays must be indexed as x,y (which puts x as the rows, not columns). Parameters ---------- scalar : N-dimensional array Array (with N-dimensions) with the quantity to be advected. wind : sequence of arrays Length N sequence of N-dimensional arrays. Represents the flow, with a component of the wind in each dimension. For example, for horizontal advection, this could be a list: [u, v], where u and v are each a 2-dimensional array. deltas : sequence A (length N) sequence containing the grid spacing in each dimension. Returns ------- N-dimensional array An N-dimensional array containing the advection at all grid points. """ # This allows passing in a list of wind components or an array. wind = _stack(wind) # If we have more than one component, we need to reverse the order along the first # dimension so that the wind components line up with the # order of the gradients from the ..., y, x ordered array. if wind.ndim > scalar.ndim: wind = wind[::-1] # Gradient returns a list of derivatives along each dimension. We convert # this to an array with dimension as the first index. Reverse the deltas to line up # with the order of the dimensions. grad = _stack(_gradient(scalar, *deltas[::-1])) # Make them be at least 2D (handling the 1D case) so that we can do the # multiply and sum below grad, wind = atleast_2d(grad, wind) return (-grad * wind).sum(axis=0)
[docs]@exporter.export @ensure_yx_order def frontogenesis(thta, u, v, dx, dy, dim_order='yx'): r"""Calculate the 2D kinematic frontogenesis of a temperature field. The implementation is a form of the Petterssen Frontogenesis and uses the formula outlined in [Bluestein1993]_ pg.248-253. .. math:: F=\frac{1}{2}\left|\nabla \theta\right|[D cos(2\beta)-\delta] * :math:`F` is 2D kinematic frontogenesis * :math:`\theta` is potential temperature * :math:`D` is the total deformation * :math:`\beta` is the angle between the axis of dilitation and the isentropes * :math:`\delta` is the divergence Notes ----- Assumes dim_order='yx', unless otherwise specified. Parameters ---------- thta : (M, N) ndarray Potential temperature u : (M, N) ndarray x component of the wind v : (M, N) ndarray y component of the wind dx : float The grid spacing in the x-direction dy : float The grid spacing in the y-direction Returns ------- (M, N) ndarray 2D Frotogenesis in [temperature units]/m/s Conversion factor to go from [temperature units]/m/s to [tempature units/100km/3h] :math:`1.08e4*1.e5` """ # Get gradients of potential temperature in both x and y grad = _gradient(thta, dy, dx) ddy_thta, ddx_thta = grad[-2:] # Throw away unused gradient components # Compute the magnitude of the potential temperature gradient mag_thta = np.sqrt(ddx_thta**2 + ddy_thta**2) # Get the shearing, stretching, and total deformation of the wind field shrd, strd = shearing_stretching_deformation(u, v, dx, dy, dim_order=dim_order) tdef = total_deformation(u, v, dx, dy, dim_order=dim_order) # Get the divergence of the wind field div = h_convergence(u, v, dx, dy, dim_order=dim_order) # Compute the angle (beta) between the wind field and the gradient of potential temperature psi = 0.5 * np.arctan2(shrd, strd) beta = np.arcsin((-ddx_thta * np.cos(psi) - ddy_thta * np.sin(psi)) / mag_thta) return 0.5 * mag_thta * (tdef * np.cos(2 * beta) - div)
[docs]@exporter.export @ensure_yx_order def geostrophic_wind(heights, f, dx, dy): r"""Calculate the geostrophic wind given from the heights or geopotential. Parameters ---------- heights : (M, N) ndarray The height field, with either leading dimensions of (x, y) or trailing dimensions of (y, x), depending on the value of ``dim_order``. f : array_like The coriolis parameter. This can be a scalar to be applied everywhere or an array of values. dx : scalar The grid spacing in the x-direction dy : scalar The grid spacing in the y-direction Returns ------- A 2-item tuple of arrays A tuple of the u-component and v-component of the geostrophic wind. """ if heights.dimensionality['[length]'] == 2.0: norm_factor = 1. / f else: norm_factor = g / f # If heights has more than 2 dimensions, we need to pass in some dummy # grid deltas so that we can still use np.gradient. It may be better to # to loop in this case, but that remains to be done. deltas = [dy, dx] if heights.ndim > 2: deltas = [units.Quantity(1., units.m)] * (heights.ndim - 2) + deltas grad = _gradient(heights, *deltas) dy, dx = grad[-2:] # Throw away unused gradient components return -norm_factor * dy, norm_factor * dx
[docs]@exporter.export @check_units('[length]', '[temperature]') def montgomery_streamfunction(height, temperature): r"""Compute the Montgomery Streamfunction on isentropic surfaces. The Montgomery Streamfunction is the streamfunction of the geostrophic wind on an isentropic surface. This quantity is proportional to the geostrophic wind in isentropic coordinates, and its gradient can be interpreted similarly to the pressure gradient in isobaric coordinates. Parameters ---------- height : `pint.Quantity` Array of geopotential height of isentropic surfaces temperature : `pint.Quantity` Array of temperature on isentropic surfaces Returns ------- stream_func : `pint.Quantity` Notes ----- The formula used is that from [Lackmann2011]_ p. 69 for T in Kelvin and height in meters: .. math:: sf = gZ + C_pT * :math:`sf` is Montgomery Streamfunction * :math:`g` is avg. gravitational acceleration on Earth * :math:`Z` is geopotential height of the isentropic surface * :math:`C_p` is specific heat at constant pressure for dry air * :math:`T` is temperature of the isentropic surface See Also -------- get_isentropic_pressure """ return (g * height) + (Cp_d * temperature)
[docs]@exporter.export @check_units('[speed]', '[speed]', '[length]', '[length]', '[length]', '[speed]', '[speed]') def storm_relative_helicity(u, v, heights, depth, bottom=0 * units.m, storm_u=0 * units('m/s'), storm_v=0 * units('m/s')): # Partially adapted from similar SharpPy code r"""Calculate storm relative helicity. Calculates storm relatively helicity following [Markowski2010] 230-231. .. math:: \int\limits_0^d (\bar v - c) \cdot \bar\omega_{h} \,dz This is applied to the data from a hodograph with the following summation: .. math:: \sum_{n = 1}^{N-1} [(u_{n+1} - c_{x})(v_{n} - c_{y}) - (u_{n} - c_{x})(v_{n+1} - c_{y})] Parameters ---------- u : array-like u component winds v : array-like v component winds heights : array-like atmospheric heights, will be converted to AGL depth : number depth of the layer bottom : number height of layer bottom AGL (default is surface) storm_u : number u component of storm motion (default is 0 m/s) storm_v : number v component of storm motion (default is 0 m/s) Returns ------- `pint.Quantity, pint.Quantity, pint.Quantity` positive, negative, total storm-relative helicity """ _, u, v = get_layer_heights(heights, depth, u, v, with_agl=True, bottom=bottom) storm_relative_u = u - storm_u storm_relative_v = v - storm_v int_layers = (storm_relative_u[1:] * storm_relative_v[:-1] - storm_relative_u[:-1] * storm_relative_v[1:]) positive_srh = int_layers[int_layers.magnitude > 0.].sum() negative_srh = int_layers[int_layers.magnitude < 0.].sum() return (positive_srh.to('meter ** 2 / second ** 2'), negative_srh.to('meter ** 2 / second ** 2'), (positive_srh + negative_srh).to('meter ** 2 / second ** 2'))