# Copyright (c) 2014,2015,2016,2017,2019 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Make Skew-T Log-P based plots.
Contain tools for making Skew-T Log-P plots, including the base plotting class,
`SkewT`, as well as a class for making a `Hodograph`.
"""
from contextlib import ExitStack
import warnings
import matplotlib
from matplotlib.axes import Axes
import matplotlib.axis as maxis
from matplotlib.collections import LineCollection
import matplotlib.colors as mcolors
from matplotlib.patches import Circle
from matplotlib.projections import register_projection
import matplotlib.spines as mspines
from matplotlib.ticker import MultipleLocator, NullFormatter, ScalarFormatter
import matplotlib.transforms as transforms
import numpy as np
from ._util import colored_line
from ..calc import dewpoint, dry_lapse, moist_lapse, vapor_pressure
from ..calc.tools import _delete_masked_points
from ..deprecation import metpyDeprecation
from ..interpolate import interpolate_1d
from ..package_tools import Exporter
from ..units import concatenate, units
exporter = Exporter(globals())
class SkewTTransform(transforms.Affine2D):
"""Perform Skew transform for Skew-T plotting.
This works in pixel space, so is designed to be applied after the normal plotting
transformations.
"""
def __init__(self, bbox, rot):
"""Initialize skew transform.
This needs a reference to the parent bounding box to do the appropriate math and
to register it as a child so that the transform is invalidated and regenerated if
the bounding box changes.
"""
super().__init__()
self._bbox = bbox
self.set_children(bbox)
self.invalidate()
# We're not trying to support changing the rotation, so go ahead and convert to
# the right factor for skewing here and just save that.
self._rot_factor = np.tan(np.deg2rad(rot))
def get_matrix(self):
"""Return transformation matrix."""
if self._invalid:
# The following matrix is equivalent to the following:
# x0, y0 = self._bbox.xmin, self._bbox.ymin
# self.translate(-x0, -y0).skew_deg(self._rot, 0).translate(x0, y0)
# Setting it this way is just more efficient.
self._mtx = np.array([[1.0, self._rot_factor, -self._rot_factor * self._bbox.ymin],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]])
# Need to clear both the invalid flag *and* reset the inverse, which is cached
# by the parent class.
self._invalid = 0
self._inverted = None
return self._mtx
class SkewXTick(maxis.XTick):
r"""Make x-axis ticks for Skew-T plots.
This class adds to the standard :class:`matplotlib.axis.XTick` dynamic checking
for whether a top or bottom tick is actually within the data limits at that part
and draw as appropriate. It also performs similar checking for gridlines.
"""
# Taken from matplotlib's SkewT example to update for matplotlib 3.1's changes to
# state management for ticks. See matplotlib/matplotlib#10088
def draw(self, renderer):
"""Draw the tick."""
# When adding the callbacks with `stack.callback`, we fetch the current
# visibility state of the artist with `get_visible`; the ExitStack will
# restore these states (`set_visible`) at the end of the block (after
# the draw).
with ExitStack() as stack:
for artist in [self.gridline, self.tick1line, self.tick2line,
self.label1, self.label2]:
stack.callback(artist.set_visible, artist.get_visible())
self.tick1line.set_visible(self.tick1line.get_visible() and self.lower_in_bounds)
self.label1.set_visible(self.label1.get_visible() and self.lower_in_bounds)
self.tick2line.set_visible(self.tick2line.get_visible() and self.upper_in_bounds)
self.label2.set_visible(self.label2.get_visible() and self.upper_in_bounds)
self.gridline.set_visible(self.gridline.get_visible() and self.grid_in_bounds)
super().draw(renderer)
@property
def lower_in_bounds(self):
"""Whether the lower part of the tick is in bounds."""
return transforms.interval_contains(self.axes.lower_xlim, self.get_loc())
@property
def upper_in_bounds(self):
"""Whether the upper part of the tick is in bounds."""
return transforms.interval_contains(self.axes.upper_xlim, self.get_loc())
@property
def grid_in_bounds(self):
"""Whether any of the tick grid line is in bounds."""
return transforms.interval_contains(self.axes.xaxis.get_view_interval(),
self.get_loc())
class SkewXAxis(maxis.XAxis):
r"""Make an x-axis that works properly for Skew-T plots.
This class exists to force the use of our custom :class:`SkewXTick` as well
as provide a custom value for interval that combines the extents of the
upper and lower x-limits from the axes.
"""
def _get_tick(self, major):
# Warning stuff can go away when we only support Matplotlib >=3.3
with warnings.catch_warnings():
warnings.simplefilter('ignore', getattr(
matplotlib, 'MatplotlibDeprecationWarning', DeprecationWarning))
return SkewXTick(self.axes, None, label=None, major=major)
# Needed to properly handle tight bbox
def _get_tick_bboxes(self, ticks, renderer):
"""Return lists of bboxes for ticks' label1's and label2's."""
return ([tick.label1.get_window_extent(renderer)
for tick in ticks if tick.label1.get_visible() and tick.lower_in_bounds],
[tick.label2.get_window_extent(renderer)
for tick in ticks if tick.label2.get_visible() and tick.upper_in_bounds])
def get_view_interval(self):
"""Get the view interval."""
return self.axes.upper_xlim[0], self.axes.lower_xlim[1]
class SkewSpine(mspines.Spine):
r"""Make an x-axis spine that works properly for Skew-T plots.
This class exists to use the separate x-limits from the axes to properly
locate the spine.
"""
def _adjust_location(self):
pts = self._path.vertices
if self.spine_type == 'top':
pts[:, 0] = self.axes.upper_xlim
else:
pts[:, 0] = self.axes.lower_xlim
class SkewXAxes(Axes):
r"""Make a set of axes for Skew-T plots.
This class handles registration of the skew-xaxes as a projection as well as setting up
the appropriate transformations. It also makes sure we use our instances for spines
and x-axis: :class:`SkewSpine` and :class:`SkewXAxis`. It provides properties to
facilitate finding the x-limits for the bottom and top of the plot as well.
"""
# The projection must specify a name. This will be used be the
# user to select the projection, i.e. ``subplot(111,
# projection='skewx')``.
name = 'skewx'
def __init__(self, *args, **kwargs):
r"""Initialize `SkewXAxes`.
Parameters
----------
args : Arbitrary positional arguments
Passed to :class:`matplotlib.axes.Axes`
position: int, optional
The rotation of the x-axis against the y-axis, in degrees.
kwargs : Arbitrary keyword arguments
Passed to :class:`matplotlib.axes.Axes`
"""
# This needs to be popped and set before moving on
self.rot = kwargs.pop('rotation', 30)
super().__init__(*args, **kwargs)
def _init_axis(self):
# Taken from Axes and modified to use our modified X-axis
self.xaxis = SkewXAxis(self)
self.spines['top'].register_axis(self.xaxis)
self.spines['bottom'].register_axis(self.xaxis)
self.yaxis = maxis.YAxis(self)
self.spines['left'].register_axis(self.yaxis)
self.spines['right'].register_axis(self.yaxis)
def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'):
# pylint: disable=unused-argument
spines = {'top': SkewSpine.linear_spine(self, 'top'),
'bottom': mspines.Spine.linear_spine(self, 'bottom'),
'left': mspines.Spine.linear_spine(self, 'left'),
'right': mspines.Spine.linear_spine(self, 'right')}
return spines
def _set_lim_and_transforms(self):
"""Set limits and transforms.
This is called once when the plot is created to set up all the
transforms for the data, text and grids.
"""
# Get the standard transform setup from the Axes base class
super()._set_lim_and_transforms()
# This transformation handles the skewing
skew_trans = SkewTTransform(self.bbox, self.rot)
# Create the full transform from Data to Pixels
self.transData += skew_trans
# Blended transforms like this need to have the skewing applied using
# both axes, in axes coords like before.
self._xaxis_transform += skew_trans
@property
def lower_xlim(self):
"""Get the data limits for the x-axis along the bottom of the axes."""
return self.axes.viewLim.intervalx
@property
def upper_xlim(self):
"""Get the data limits for the x-axis along the top of the axes."""
return self.transData.inverted().transform([[self.bbox.xmin, self.bbox.ymax],
self.bbox.max])[:, 0]
# Now register the projection with matplotlib so the user can select it.
register_projection(SkewXAxes)
[docs]@exporter.export
class SkewT(object):
r"""Make Skew-T log-P plots of data.
This class simplifies the process of creating Skew-T log-P plots in
using matplotlib. It handles requesting the appropriate skewed projection,
and provides simplified wrappers to make it easy to plot data, add wind
barbs, and add other lines to the plots (e.g. dry adiabats)
Attributes
----------
ax : `matplotlib.axes.Axes`
The underlying Axes instance, which can be used for calling additional
plot functions (e.g. `axvline`)
"""
[docs] def __init__(self, fig=None, rotation=30, subplot=None, rect=None, aspect=80.5):
r"""Create SkewT - logP plots.
Parameters
----------
fig : matplotlib.figure.Figure, optional
Source figure to use for plotting. If none is given, a new
:class:`matplotlib.figure.Figure` instance will be created.
rotation : float or int, optional
Controls the rotation of temperature relative to horizontal. Given
in degrees counterclockwise from x-axis. Defaults to 30 degrees.
subplot : tuple[int, int, int] or `matplotlib.gridspec.SubplotSpec` instance, optional
Controls the size/position of the created subplot. This allows creating
the skewT as part of a collection of subplots. If subplot is a tuple, it
should conform to the specification used for
:meth:`matplotlib.figure.Figure.add_subplot`. The
:class:`matplotlib.gridspec.SubplotSpec`
can be created by using :class:`matplotlib.gridspec.GridSpec`.
rect : tuple[float, float, float, float], optional
Rectangle (left, bottom, width, height) in which to place the axes. This
allows the user to place the axes at an arbitrary point on the figure.
aspect : float, int, or 'auto', optional
Aspect ratio (i.e. ratio of y-scale to x-scale) to maintain in the plot.
Defaults to 80.5. Passing the string ``'auto'`` tells matplotlib to handle
the aspect ratio automatically (this is not recommended for SkewT).
"""
if fig is None:
import matplotlib.pyplot as plt
figsize = plt.rcParams.get('figure.figsize', (7, 7))
fig = plt.figure(figsize=figsize)
self._fig = fig
if rect and subplot:
raise ValueError("Specify only one of `rect' and `subplot', but not both")
elif rect:
self.ax = fig.add_axes(rect, projection='skewx', rotation=rotation)
else:
if subplot is not None:
# Handle being passed a tuple for the subplot, or a GridSpec instance
try:
len(subplot)
except TypeError:
subplot = (subplot,)
else:
subplot = (1, 1, 1)
self.ax = fig.add_subplot(*subplot, projection='skewx', rotation=rotation)
# Set the yaxis as inverted with log scaling
self.ax.set_yscale('log')
# Override default ticking for log scaling
self.ax.yaxis.set_major_formatter(ScalarFormatter())
self.ax.yaxis.set_major_locator(MultipleLocator(100))
self.ax.yaxis.set_minor_formatter(NullFormatter())
# Needed to make sure matplotlib doesn't freak out and create a bunch of ticks
# Also takes care of inverting the y-axis
self.ax.set_ylim(1050, 100)
self.ax.yaxis.set_units(units.hPa)
# Try to make sane default temperature plotting ticks
self.ax.xaxis.set_major_locator(MultipleLocator(10))
self.ax.xaxis.set_units(units.degC)
self.ax.set_xlim(-40, 50)
self.ax.grid(True)
self.mixing_lines = None
self.dry_adiabats = None
self.moist_adiabats = None
# Maintain a reasonable ratio of data limits. Only works on Matplotlib >= 3.2
if matplotlib.__version__[:3] > '3.1':
self.ax.set_aspect(aspect, adjustable='box')
[docs] def plot(self, p, t, *args, **kwargs):
r"""Plot data.
Simple wrapper around plot so that pressure is the first (independent)
input. This is essentially a wrapper around `plot`.
Parameters
----------
p : array_like
pressure values
t : array_like
temperature values, can also be used for things like dew point
args
Other positional arguments to pass to :func:`~matplotlib.pyplot.plot`
kwargs
Other keyword arguments to pass to :func:`~matplotlib.pyplot.plot`
Returns
-------
list[matplotlib.lines.Line2D]
lines plotted
See Also
--------
:func:`matplotlib.pyplot.plot`
"""
# Skew-T logP plotting
t, p = _delete_masked_points(t, p)
return self.ax.plot(t, p, *args, **kwargs)
[docs] def plot_barbs(self, p, u, v, c=None, xloc=1.0, x_clip_radius=0.1,
y_clip_radius=0.08, **kwargs):
r"""Plot wind barbs.
Adds wind barbs to the skew-T plot. This is a wrapper around the
`barbs` command that adds to appropriate transform to place the
barbs in a vertical line, located as a function of pressure.
Parameters
----------
p : array_like
pressure values
u : array_like
U (East-West) component of wind
v : array_like
V (North-South) component of wind
c:
An optional array used to map colors to the barbs
xloc : float, optional
Position for the barbs, in normalized axes coordinates, where 0.0
denotes far left and 1.0 denotes far right. Defaults to far right.
x_clip_radius : float, optional
Space, in normalized axes coordinates, to leave before clipping
wind barbs in the x-direction. Defaults to 0.1.
y_clip_radius : float, optional
Space, in normalized axes coordinates, to leave above/below plot
before clipping wind barbs in the y-direction. Defaults to 0.08.
plot_units: `pint.unit`
Units to plot in (performing conversion if necessary). Defaults to given units.
kwargs
Other keyword arguments to pass to :func:`~matplotlib.pyplot.barbs`
Returns
-------
matplotlib.quiver.Barbs
instance created
See Also
--------
:func:`matplotlib.pyplot.barbs`
"""
# If plot_units specified, convert the data to those units
plotting_units = kwargs.pop('plot_units', None)
if plotting_units:
if hasattr(u, 'units') and hasattr(v, 'units'):
u = u.to(plotting_units)
v = v.to(plotting_units)
else:
raise ValueError('To convert to plotting units, units must be attached to '
'u and v wind components.')
# Assemble array of x-locations in axes space
x = np.empty_like(p)
x.fill(xloc)
# Do barbs plot at this location
if c is not None:
b = self.ax.barbs(x, p, u, v, c,
transform=self.ax.get_yaxis_transform(which='tick2'),
clip_on=True, zorder=2, **kwargs)
else:
b = self.ax.barbs(x, p, u, v,
transform=self.ax.get_yaxis_transform(which='tick2'),
clip_on=True, zorder=2, **kwargs)
# Override the default clip box, which is the axes rectangle, so we can have
# barbs that extend outside.
ax_bbox = transforms.Bbox([[xloc - x_clip_radius, -y_clip_radius],
[xloc + x_clip_radius, 1.0 + y_clip_radius]])
b.set_clip_box(transforms.TransformedBbox(ax_bbox, self.ax.transAxes))
return b
[docs] def plot_dry_adiabats(self, t0=None, p=None, **kwargs):
r"""Plot dry adiabats.
Adds dry adiabats (lines of constant potential temperature) to the
plot. The default style of these lines is dashed red lines with an alpha
value of 0.5. These can be overridden using keyword arguments.
Parameters
----------
t0 : array_like, optional
Starting temperature values in Kelvin. If none are given, they will be
generated using the current temperature range at the bottom of
the plot.
p : array_like, optional
Pressure values to be included in the dry adiabats. If not
specified, they will be linearly distributed across the current
plotted pressure range.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:func:`~metpy.calc.thermo.dry_lapse`
:meth:`plot_moist_adiabats`
:class:`matplotlib.collections.LineCollection`
"""
# Remove old lines
if self.dry_adiabats:
self.dry_adiabats.remove()
# Determine set of starting temps if necessary
if t0 is None:
xmin, xmax = self.ax.get_xlim()
t0 = np.arange(xmin, xmax + 1, 10) * units.degC
# Get pressure levels based on ylims if necessary
if p is None:
p = np.linspace(*self.ax.get_ylim()) * units.mbar
# Assemble into data for plotting
t = dry_lapse(p, t0[:, np.newaxis], 1000. * units.mbar).to(units.degC)
linedata = [np.vstack((ti.m, p.m)).T for ti in t]
# Add to plot
kwargs.setdefault('colors', 'r')
kwargs.setdefault('linestyles', 'dashed')
kwargs.setdefault('alpha', 0.5)
self.dry_adiabats = self.ax.add_collection(LineCollection(linedata, **kwargs))
return self.dry_adiabats
[docs] def plot_moist_adiabats(self, t0=None, p=None, **kwargs):
r"""Plot moist adiabats.
Adds saturated pseudo-adiabats (lines of constant equivalent potential
temperature) to the plot. The default style of these lines is dashed
blue lines with an alpha value of 0.5. These can be overridden using
keyword arguments.
Parameters
----------
t0 : array_like, optional
Starting temperature values in Kelvin. If none are given, they will be
generated using the current temperature range at the bottom of
the plot.
p : array_like, optional
Pressure values to be included in the moist adiabats. If not
specified, they will be linearly distributed across the current
plotted pressure range.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:func:`~metpy.calc.thermo.moist_lapse`
:meth:`plot_dry_adiabats`
:class:`matplotlib.collections.LineCollection`
"""
# Remove old lines
if self.moist_adiabats:
self.moist_adiabats.remove()
# Determine set of starting temps if necessary
if t0 is None:
xmin, xmax = self.ax.get_xlim()
t0 = np.concatenate((np.arange(xmin, 0, 10),
np.arange(0, xmax + 1, 5))) * units.degC
# Get pressure levels based on ylims if necessary
if p is None:
p = np.linspace(*self.ax.get_ylim()) * units.mbar
# Assemble into data for plotting
t = moist_lapse(p, t0[:, np.newaxis], 1000. * units.mbar).to(units.degC)
linedata = [np.vstack((ti.m, p.m)).T for ti in t]
# Add to plot
kwargs.setdefault('colors', 'b')
kwargs.setdefault('linestyles', 'dashed')
kwargs.setdefault('alpha', 0.5)
self.moist_adiabats = self.ax.add_collection(LineCollection(linedata, **kwargs))
return self.moist_adiabats
[docs] def plot_mixing_lines(self, w=None, p=None, **kwargs):
r"""Plot lines of constant mixing ratio.
Adds lines of constant mixing ratio (isohumes) to the
plot. The default style of these lines is dashed green lines with an
alpha value of 0.8. These can be overridden using keyword arguments.
Parameters
----------
w : array_like, optional
Unitless mixing ratio values to plot. If none are given, default
values are used.
p : array_like, optional
Pressure values to be included in the isohumes. If not
specified, they will be linearly distributed across the current
plotted pressure range up to 600 mb.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:class:`matplotlib.collections.LineCollection`
"""
# Remove old lines
if self.mixing_lines:
self.mixing_lines.remove()
# Default mixing level values if necessary
if w is None:
w = np.array([0.0004, 0.001, 0.002, 0.004, 0.007, 0.01,
0.016, 0.024, 0.032]).reshape(-1, 1)
# Set pressure range if necessary
if p is None:
p = np.linspace(600, max(self.ax.get_ylim())) * units.mbar
# Assemble data for plotting
td = dewpoint(vapor_pressure(p, w))
linedata = [np.vstack((t.m, p.m)).T for t in td]
# Add to plot
kwargs.setdefault('colors', 'g')
kwargs.setdefault('linestyles', 'dashed')
kwargs.setdefault('alpha', 0.8)
self.mixing_lines = self.ax.add_collection(LineCollection(linedata, **kwargs))
return self.mixing_lines
[docs] def shade_area(self, y, x1, x2=0, which='both', **kwargs):
r"""Shade area between two curves.
Shades areas between curves. Area can be where one is greater or less than the other
or all areas shaded.
Parameters
----------
y : array_like
1-dimensional array of numeric y-values
x1 : array_like
1-dimensional array of numeric x-values
x2 : array_like
1-dimensional array of numeric x-values
which : string
Specifies if `positive`, `negative`, or `both` areas are being shaded.
Will be overridden by where.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.PolyCollection`
Returns
-------
:class:`matplotlib.collections.PolyCollection`
See Also
--------
:class:`matplotlib.collections.PolyCollection`
:func:`matplotlib.axes.Axes.fill_betweenx`
"""
fill_properties = {'positive':
{'facecolor': 'tab:red', 'alpha': 0.4, 'where': x1 > x2},
'negative':
{'facecolor': 'tab:blue', 'alpha': 0.4, 'where': x1 < x2},
'both':
{'facecolor': 'tab:green', 'alpha': 0.4, 'where': None}}
try:
fill_args = fill_properties[which]
fill_args.update(kwargs)
except KeyError:
raise ValueError('Unknown option for which: {0}'.format(str(which)))
arrs = y, x1, x2
if fill_args['where'] is not None:
arrs = arrs + (fill_args['where'],)
fill_args.pop('where', None)
fill_args['interpolate'] = True
arrs = _delete_masked_points(*arrs)
return self.ax.fill_betweenx(*arrs, **fill_args)
[docs] def shade_cape(self, p, t, t_parcel, **kwargs):
r"""Shade areas of CAPE.
Shades areas where the parcel is warmer than the environment (areas of positive
buoyancy.
Parameters
----------
p : array_like
Pressure values
t : array_like
Temperature values
t_parcel : array_like
Parcel path temperature values
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.PolyCollection`
Returns
-------
:class:`matplotlib.collections.PolyCollection`
See Also
--------
:class:`matplotlib.collections.PolyCollection`
:func:`matplotlib.axes.Axes.fill_betweenx`
"""
return self.shade_area(p, t_parcel, t, which='positive', **kwargs)
[docs] def shade_cin(self, p, t, t_parcel, **kwargs):
r"""Shade areas of CIN.
Shades areas where the parcel is cooler than the environment (areas of negative
buoyancy.
Parameters
----------
p : array_like
Pressure values
t : array_like
Temperature values
t_parcel : array_like
Parcel path temperature values
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.PolyCollection`
Returns
-------
:class:`matplotlib.collections.PolyCollection`
See Also
--------
:class:`matplotlib.collections.PolyCollection`
:func:`matplotlib.axes.Axes.fill_betweenx`
"""
return self.shade_area(p, t_parcel, t, which='negative', **kwargs)
[docs]@exporter.export
class Hodograph(object):
r"""Make a hodograph of wind data.
Plots the u and v components of the wind along the x and y axes, respectively.
This class simplifies the process of creating a hodograph using matplotlib.
It provides helpers for creating a circular grid and for plotting the wind as a line
colored by another value (such as wind speed).
Attributes
----------
ax : `matplotlib.axes.Axes`
The underlying Axes instance used for all plotting
"""
[docs] def __init__(self, ax=None, component_range=80):
r"""Create a Hodograph instance.
Parameters
----------
ax : `matplotlib.axes.Axes`, optional
The `Axes` instance used for plotting
component_range : value
The maximum range of the plot. Used to set plot bounds and control the maximum
number of grid rings needed.
"""
if ax is None:
import matplotlib.pyplot as plt
self.ax = plt.figure().add_subplot(1, 1, 1)
else:
self.ax = ax
self.ax.set_aspect('equal', 'box')
self.ax.set_xlim(-component_range, component_range)
self.ax.set_ylim(-component_range, component_range)
# == sqrt(2) * max_range, which is the distance at the corner
self.max_range = 1.4142135 * component_range
[docs] def add_grid(self, increment=10., **kwargs):
r"""Add grid lines to hodograph.
Creates lines for the x- and y-axes, as well as circles denoting wind speed values.
Parameters
----------
increment : value, optional
The value increment between rings
kwargs
Other kwargs to control appearance of lines
See Also
--------
:class:`matplotlib.patches.Circle`
:meth:`matplotlib.axes.Axes.axhline`
:meth:`matplotlib.axes.Axes.axvline`
"""
# Some default arguments. Take those, and update with any
# arguments passed in
grid_args = {'color': 'grey', 'linestyle': 'dashed'}
if kwargs:
grid_args.update(kwargs)
# Take those args and make appropriate for a Circle
circle_args = grid_args.copy()
color = circle_args.pop('color', None)
circle_args['edgecolor'] = color
circle_args['fill'] = False
self.rings = []
for r in np.arange(increment, self.max_range, increment):
c = Circle((0, 0), radius=r, **circle_args)
self.ax.add_patch(c)
self.rings.append(c)
# Add lines for x=0 and y=0
self.yaxis = self.ax.axvline(0, **grid_args)
self.xaxis = self.ax.axhline(0, **grid_args)
@staticmethod
def _form_line_args(kwargs):
"""Simplify taking the default line style and extending with kwargs."""
def_args = {'linewidth': 3}
def_args.update(kwargs)
return def_args
[docs] def plot(self, u, v, **kwargs):
r"""Plot u, v data.
Plots the wind data on the hodograph.
Parameters
----------
u : array_like
u-component of wind
v : array_like
v-component of wind
kwargs
Other keyword arguments to pass to :meth:`matplotlib.axes.Axes.plot`
Returns
-------
list[matplotlib.lines.Line2D]
lines plotted
See Also
--------
:meth:`Hodograph.plot_colormapped`
"""
line_args = self._form_line_args(kwargs)
u, v = _delete_masked_points(u, v)
return self.ax.plot(u, v, **line_args)
[docs] def wind_vectors(self, u, v, **kwargs):
r"""Plot u, v data as wind vectors.
Plot the wind data as vectors for each level, beginning at the origin.
Parameters
----------
u : array_like
u-component of wind
v : array_like
v-component of wind
kwargs
Other keyword arguments to pass to :meth:`matplotlib.axes.Axes.quiver`
Returns
-------
matplotlib.quiver.Quiver
arrows plotted
"""
quiver_args = {'units': 'xy', 'scale': 1}
quiver_args.update(**kwargs)
center_position = np.zeros_like(u)
return self.ax.quiver(center_position, center_position,
u, v, **quiver_args)
[docs] def plot_colormapped(self, u, v, c, intervals=None, colors=None, **kwargs):
r"""Plot u, v data, with line colored based on a third set of data.
Plots the wind data on the hodograph, but with a colormapped line. Takes a third
variable besides the winds (e.g. heights or pressure levels) and either a colormap to
color it with or a series of contour intervals and colors to create a colormap and
norm to control colormapping. The intervals must always be in increasing
order. For using custom contour intervals with height data, the function will
automatically interpolate to the contour intervals from the height and wind data,
as well as convert the input contour intervals from height AGL to MSL to work with the
provided heights.
Parameters
----------
u : array_like
u-component of wind
v : array_like
v-component of wind
c : array_like
data to use for colormapping (e.g. heights, pressure, wind speed)
intervals: array-like, optional
Array of intervals for c to use in coloring the hodograph.
colors: list, optional
Array of strings representing colors for the hodograph segments.
kwargs
Other keyword arguments to pass to :class:`matplotlib.collections.LineCollection`
Returns
-------
matplotlib.collections.LineCollection
instance created
See Also
--------
:meth:`Hodograph.plot`
Notes
-----
`plot_colormapped` previously accepted `bounds` as a parameter for coordinate values.
This has been deprecated in 0.11 in favor of `intervals`.
"""
if 'bounds' in kwargs:
intervals = kwargs.pop('bounds')
warnings.warn('The use of "bounds" as a parameter has been deprecated in '
'favor of "intervals",', metpyDeprecation)
u, v, c = _delete_masked_points(u, v, c)
# Plotting a color segmented hodograph
if colors:
cmap = mcolors.ListedColormap(colors)
# If we are segmenting by height (a length), interpolate the contour intervals
if intervals.dimensionality == {'[length]': 1.0}:
# Find any intervals not in the data and interpolate them
interpolation_heights = [bound.m for bound in intervals if bound not in c]
interpolation_heights = np.array(interpolation_heights) * intervals.units
interpolation_heights = (np.sort(interpolation_heights.magnitude)
* interpolation_heights.units)
(interpolated_heights, interpolated_u,
interpolated_v) = interpolate_1d(interpolation_heights, c, c, u, v)
# Combine the interpolated data with the actual data
c = concatenate([c, interpolated_heights])
u = concatenate([u, interpolated_u])
v = concatenate([v, interpolated_v])
sort_inds = np.argsort(c)
c = c[sort_inds]
u = u[sort_inds]
v = v[sort_inds]
# Unit conversion required for coloring of bounds/data in dissimilar units
# to work properly.
c = c.to_base_units() # TODO: This shouldn't be required!
intervals = intervals.to_base_units()
# If segmenting by anything else, do not interpolate, just use the data
else:
intervals = np.asarray(intervals) * intervals.units
norm = mcolors.BoundaryNorm(intervals.magnitude, cmap.N)
cmap.set_over('none')
cmap.set_under('none')
kwargs['cmap'] = cmap
kwargs['norm'] = norm
line_args = self._form_line_args(kwargs)
# Plotting a continuously colored line
else:
line_args = self._form_line_args(kwargs)
# Do the plotting
lc = colored_line(u, v, c, **line_args)
self.ax.add_collection(lc)
return lc