Source code for metpy.io.metar

# Copyright (c) 2019 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""Parse METAR-formatted data."""
# Import the necessary libraries
from collections import namedtuple
from datetime import datetime
import warnings

import numpy as np
import pandas as pd

from ._tools import open_as_needed
from .metar_parser import parse, ParseError
from .station_data import station_info
from ..calc import altimeter_to_sea_level_pressure, wind_components
from ..package_tools import Exporter
from ..plots.wx_symbols import wx_code_map
from ..units import pandas_dataframe_to_unit_arrays, units

exporter = Exporter(globals())

# Ignore the pandas warning
warnings.filterwarnings('ignore', "Pandas doesn't allow columns to be created", UserWarning)

# Configure the named tuple used for storing METAR data
Metar = namedtuple('metar', ['station_id', 'latitude', 'longitude', 'elevation',
                             'date_time', 'wind_direction', 'wind_speed', 'current_wx1',
                             'current_wx2', 'current_wx3', 'skyc1', 'skylev1', 'skyc2',
                             'skylev2', 'skyc3', 'skylev3', 'skyc4', 'skylev4',
                             'cloudcover', 'temperature', 'dewpoint', 'altimeter',
                             'current_wx1_symbol', 'current_wx2_symbol',
                             'current_wx3_symbol'])

# Create a dictionary for attaching units to the different variables
col_units = {'station_id': None,
             'latitude': 'degrees',
             'longitude': 'degrees',
             'elevation': 'meters',
             'date_time': None,
             'wind_direction': 'degrees',
             'wind_speed': 'kts',
             'eastward_wind': 'kts',
             'northward_wind': 'kts',
             'current_wx1': None,
             'current_wx2': None,
             'current_wx3': None,
             'low_cloud_type': None,
             'low_cloud_level': 'feet',
             'medium_cloud_type': None,
             'medium_cloud_level': 'feet',
             'high_cloud_type': None,
             'high_cloud_level': 'feet',
             'highest_cloud_type': None,
             'highest_cloud_level:': None,
             'cloud_coverage': None,
             'air_temperature': 'degC',
             'dew_point_temperature': 'degC',
             'altimeter': 'inHg',
             'air_pressure_at_sea_level': 'hPa',
             'present_weather': None,
             'past_weather': None,
             'past_weather2': None}


[docs]@exporter.export def parse_metar_to_dataframe(metar_text, year=datetime.now().year, month=datetime.now().month): """Parse a single METAR report into a Pandas DataFrame. Takes a METAR string in a text form, and creates a `pandas.DataFrame` including the essential information (not including the remarks) The parser follows the WMO format, allowing for missing data and assigning nan values where necessary. The WMO code is also provided for current weather, which can be utilized when plotting. Parameters ---------- metar_text : str The METAR report year : int, optional Year in which observation was taken, defaults to the current year month : int, optional Month in which observation was taken, defaults to the current month Returns ------- `pandas.DataFrame` Notes ----- The output has the following columns: 'station_id': Station Identifier (ex. KLOT) 'latitude': Latitude of the observation, measured in degrees 'longitude': Longitude of the observation, measured in degrees 'elevation': Elevation of the observation above sea level, measured in meters 'date_time': Date and time of the observation, datetime object 'wind_direction': Direction the wind is coming from, measured in degrees 'wind_spd': Wind speed, measured in knots 'current_wx1': Current weather (1 of 3) 'current_wx2': Current weather (2 of 3) 'current_wx3': Current weather (3 of 3) 'skyc1': Sky cover (ex. FEW) 'skylev1': Height of sky cover 1, measured in feet 'skyc2': Sky cover (ex. OVC) 'skylev2': Height of sky cover 2, measured in feet 'skyc3': Sky cover (ex. FEW) 'skylev3': Height of sky cover 3, measured in feet 'skyc4': Sky cover (ex. CLR) 'skylev4:': Height of sky cover 4, measured in feet 'cloudcover': Cloud coverage measured in oktas, taken from maximum of sky cover values 'temperature': Temperature, measured in degrees Celsius 'dewpoint': Dew point, measured in degrees Celsius 'altimeter': Altimeter value, measured in inches of mercury, float 'current_wx1_symbol': Current weather symbol (1 of 3), integer 'current_wx2_symbol': Current weather symbol (2 of 3), integer 'current_wx3_symbol': Current weather symbol (3 of 3), integer 'sea_level_pressure': Sea level pressure, derived from temperature, elevation and altimeter value, float """ # Use the named tuple parsing function to separate metar # Utilizes the station dictionary which contains elevation, latitude, and longitude metar_vars = parse_metar_to_named_tuple(metar_text, station_info, year, month) # Use a pandas dataframe to store the data df = pd.DataFrame({'station_id': metar_vars.station_id, 'latitude': metar_vars.latitude, 'longitude': metar_vars.longitude, 'elevation': metar_vars.elevation, 'date_time': metar_vars.date_time, 'wind_direction': metar_vars.wind_direction, 'wind_speed': metar_vars.wind_speed, 'current_wx1': metar_vars.current_wx1, 'current_wx2': metar_vars.current_wx2, 'current_wx3': metar_vars.current_wx3, 'low_cloud_type': metar_vars.skyc1, 'low_cloud_level': metar_vars.skylev1, 'medium_cloud_type': metar_vars.skyc2, 'medium_cloud_level': metar_vars.skylev2, 'high_cloud_type': metar_vars.skyc3, 'high_cloud_level': metar_vars.skylev3, 'highest_cloud_type': metar_vars.skyc4, 'highest_cloud_level': metar_vars.skylev4, 'cloud_coverage': metar_vars.cloudcover, 'air_temperature': metar_vars.temperature, 'dew_point_temperature': metar_vars.dewpoint, 'altimeter': metar_vars.altimeter, 'present_weather': metar_vars.current_wx1_symbol, 'past_weather': metar_vars.current_wx2_symbol, 'past_weather2': metar_vars.current_wx3_symbol}, index=[metar_vars.station_id]) # Convert to sea level pressure using calculation in metpy.calc try: # Create a field for sea-level pressure and make sure it is a float df['air_pressure_at_sea_level'] = float(altimeter_to_sea_level_pressure( df.altimeter.values * units('inHg'), df.elevation.values * units('meters'), df.temperature.values * units('degC')).to('hPa').magnitude) except AttributeError: df['air_pressure_at_sea_level'] = [np.nan] # Use get wind components and assign them to u and v variables df['eastward_wind'], df['northward_wind'] = wind_components((df.wind_speed.values * units.kts), df.wind_direction.values * units.degree) # Round the altimeter and sea-level pressure values df['altimeter'] = df.altimeter.round(2) df['air_pressure_at_sea_level'] = df.air_pressure_at_sea_level.round(2) # Set the units for the dataframe df.units = col_units # Add the array for units to the dataframe pandas_dataframe_to_unit_arrays(df) # Return the dataframe return df
def parse_metar_to_named_tuple(metar_text, station_metadata, year=datetime.now().year, month=datetime.now().month): """Parse a METAR report in text form into a list of named tuples. Parameters ---------- metar_text : str The METAR report station_metadata : dict Mapping of station identifiers to station metadata Returns ------- `pandas.DataFrame` Notes ----- Returned data has named tuples with the following attributes: 'station_id': Station Identifier (ex. KLOT) 'latitude': Latitude of the observation, measured in degrees 'longitude': Longitude of the observation, measured in degrees 'elevation': Elevation of the observation above sea level, measured in meters 'date_time': Date and time of the observation, datetime object 'wind_direction': Direction the wind is coming from, measured in degrees 'wind_spd': Wind speed, measured in knots 'current_wx1': Current weather (1 of 3) 'current_wx2': Current weather (2 of 3) 'current_wx3': Current weather (3 of 3) 'skyc1': Sky cover (ex. FEW) 'skylev1': Height of sky cover 1, measured in feet 'skyc2': Sky cover (ex. OVC) 'skylev2': Height of sky cover 2, measured in feet 'skyc3': Sky cover (ex. FEW) 'skylev3': Height of sky cover 3, measured in feet 'skyc4': Sky cover (ex. CLR) 'skylev4:': Height of sky cover 4, measured in feet 'cloudcover': Cloud coverage measured in oktas, taken from maximum of sky cover values 'temperature': Temperature, measured in degrees Celsius 'dewpoint': Dewpoint, measured in degrees Celsius 'altimeter': Altimeter value, measured in inches of mercury, float 'current_wx1_symbol': Current weather symbol (1 of 3), integer 'current_wx2_symbol': Current weather symbol (2 of 3), integer 'current_wx3_symbol': Current weather symbol (3 of 3), integer 'sea_level_pressure': Sea level pressure, derived from temperature, elevation and altimeter value, float """ # Decode the data using the parser (built using Canopy) the parser utilizes a grammar # file which follows the format structure dictated by the WMO Handbook, but has the # flexibility to decode the METAR text when there are missing or incorrectly # encoded values tree = parse(metar_text) # Station ID which is used to find the latitude, longitude, and elevation station_id = tree.siteid.text.strip() # Extract the latitude and longitude values from 'master' dictionary try: lat = station_metadata[tree.siteid.text.strip()].latitude lon = station_metadata[tree.siteid.text.strip()].longitude elev = station_metadata[tree.siteid.text.strip()].altitude except KeyError: lat = np.nan lon = np.nan elev = np.nan # Set the datetime, day, and time_utc try: day_time_utc = tree.datetime.text[:-1].strip() day = int(day_time_utc[0:2]) hour = int(day_time_utc[2:4]) minute = int(day_time_utc[4:7]) date_time = datetime(year, month, day, hour, minute) except (AttributeError, ValueError): date_time = np.nan # Set the wind values try: # If there are missing wind values, set wind speed and wind direction to nan if ('/' in tree.wind.text) or (tree.wind.text == 'KT') or (tree.wind.text == ''): wind_dir = np.nan wind_spd = np.nan # If the wind direction is variable, set wind direction to nan but keep the wind speed else: if (tree.wind.wind_dir.text == 'VRB') or (tree.wind.wind_dir.text == 'VAR'): wind_dir = np.nan wind_spd = float(tree.wind.wind_spd.text) else: # If the wind speed and direction is given, keep the values wind_dir = int(tree.wind.wind_dir.text) wind_spd = int(tree.wind.wind_spd.text) # If there are any errors, return nan except ValueError: wind_dir = np.nan wind_spd = np.nan # Set the weather symbols # If the weather symbol is missing, set values to nan if tree.curwx.text == '': current_wx1 = np.nan current_wx2 = np.nan current_wx3 = np.nan current_wx1_symbol = 0 current_wx2_symbol = 0 current_wx3_symbol = 0 else: wx = [np.nan, np.nan, np.nan] # Loop through symbols and assign according WMO codes wx[0:len((tree.curwx.text.strip()).split())] = tree.curwx.text.strip().split() current_wx1 = wx[0] current_wx2 = wx[1] current_wx3 = wx[2] try: current_wx1_symbol = int(wx_code_map[wx[0]]) except (IndexError, KeyError): current_wx1_symbol = 0 try: current_wx2_symbol = int(wx_code_map[wx[1]]) except (IndexError, KeyError): current_wx2_symbol = 0 try: current_wx3_symbol = int(wx_code_map[wx[3]]) except (IndexError, KeyError): current_wx3_symbol = 0 # Set the sky conditions if tree.skyc.text[1:3] == 'VV': skyc1 = 'VV' skylev1 = tree.skyc.text.strip()[2:] skyc2 = np.nan skylev2 = np.nan skyc3 = np.nan skylev3 = np.nan skyc4 = np.nan skylev4 = np.nan else: skyc = [] skyc[0:len((tree.skyc.text.strip()).split())] = tree.skyc.text.strip().split() try: skyc1 = skyc[0][0:3] if '/' in skyc1: skyc1 = np.nan except (IndexError, ValueError, TypeError): skyc1 = np.nan try: skylev1 = skyc[0][3:] if '/' in skylev1: skylev1 = np.nan else: skylev1 = float(skylev1) * 100 except (IndexError, ValueError, TypeError): skylev1 = np.nan try: skyc2 = skyc[1][0:3] if '/' in skyc2: skyc2 = np.nan except (IndexError, ValueError, TypeError): skyc2 = np.nan try: skylev2 = skyc[1][3:] if '/' in skylev2: skylev2 = np.nan else: skylev2 = float(skylev2) * 100 except (IndexError, ValueError, TypeError): skylev2 = np.nan try: skyc3 = skyc[2][0:3] if '/' in skyc3: skyc3 = np.nan except (IndexError, ValueError): skyc3 = np.nan try: skylev3 = skyc[2][3:] if '/' in skylev3: skylev3 = np.nan else: skylev3 = float(skylev3) * 100 except (IndexError, ValueError, TypeError): skylev3 = np.nan try: skyc4 = skyc[3][0:3] if '/' in skyc4: skyc4 = np.nan except (IndexError, ValueError, TypeError): skyc4 = np.nan try: skylev4 = skyc[3][3:] if '/' in skylev4: skylev4 = np.nan else: skylev4 = float(skylev4) * 100 except (IndexError, ValueError, TypeError): skylev4 = np.nan # Set the cloud cover variable (measured in oktas) if ('OVC' or 'VV') in tree.skyc.text: cloudcover = 8 elif 'BKN' in tree.skyc.text: cloudcover = 6 elif 'SCT' in tree.skyc.text: cloudcover = 4 elif 'FEW' in tree.skyc.text: cloudcover = 2 elif ('SKC' in tree.skyc.text) or ('NCD' in tree.skyc.text) \ or ('NSC' in tree.skyc.text) or 'CLR' in tree.skyc.text: cloudcover = 0 else: cloudcover = 10 # Set the temperature and dewpoint if (tree.temp_dewp.text == '') or (tree.temp_dewp.text == ' MM/MM'): temp = np.nan dewp = np.nan else: try: if 'M' in tree.temp_dewp.temp.text: temp = (-1 * float(tree.temp_dewp.temp.text[-2:])) else: temp = float(tree.temp_dewp.temp.text[-2:]) except ValueError: temp = np.nan try: if 'M' in tree.temp_dewp.dewp.text: dewp = (-1 * float(tree.temp_dewp.dewp.text[-2:])) else: dewp = float(tree.temp_dewp.dewp.text[-2:]) except ValueError: dewp = np.nan # Set the altimeter value and sea level pressure if tree.altim.text == '': altim = np.nan else: if (float(tree.altim.text.strip()[1:5])) > 1100: altim = float(tree.altim.text.strip()[1:5]) / 100 else: altim = (int(tree.altim.text.strip()[1:5]) * units.hPa).to('inHg').magnitude # Returns a named tuple with all the relevant variables return Metar(station_id, lat, lon, elev, date_time, wind_dir, wind_spd, current_wx1, current_wx2, current_wx3, skyc1, skylev1, skyc2, skylev2, skyc3, skylev3, skyc4, skylev4, cloudcover, temp, dewp, altim, current_wx1_symbol, current_wx2_symbol, current_wx3_symbol)
[docs]@exporter.export def parse_metar_file(filename, year=datetime.now().year, month=datetime.now().month): """Parse a text file containing multiple METAR reports and/or text products. Parameters ---------- filename : str or file-like object If str, the name of the file to be opened. If `filename` is a file-like object, this will be read from directly. year : int, optional Year in which observation was taken, defaults to the current year month : int, optional Month in which observation was taken, defaults to the current month Returns ------- `pandas.DataFrame` Notes ----- The returned `pandas.DataFrame` has the following columns: 'station_id': Station Identifier (ex. KLOT) 'latitude': Latitude of the observation, measured in degrees 'longitude': Longitude of the observation, measured in degrees 'elevation': Elevation of the observation above sea level, measured in meters 'date_time': Date and time of the observation, datetime object 'wind_direction': Direction the wind is coming from, measured in degrees 'wind_spd': Wind speed, measured in knots 'current_wx1': Current weather (1 of 3) 'current_wx2': Current weather (2 of 3) 'current_wx3': Current weather (3 of 3) 'skyc1': Sky cover (ex. FEW) 'skylev1': Height of sky cover 1, measured in feet 'skyc2': Sky cover (ex. OVC) 'skylev2': Height of sky cover 2, measured in feet 'skyc3': Sky cover (ex. FEW) 'skylev3': Height of sky cover 3, measured in feet 'skyc4': Sky cover (ex. CLR) 'skylev4:': Height of sky cover 4, measured in feet 'cloudcover': Cloud coverage measured in oktas, taken from maximum of sky cover values 'temperature': Temperature, measured in degrees Celsius 'dewpoint': Dew point, measured in degrees Celsius 'altimeter': Altimeter value, measured in inches of mercury, float 'current_wx1_symbol': Current weather symbol (1 of 3), integer 'current_wx2_symbol': Current weather symbol (2 of 3), integer 'current_wx3_symbol': Current weather symbol (3 of 3), integer 'sea_level_pressure': Sea level pressure, derived from temperature, elevation and altimeter value, float """ # Function to merge METARs def merge(x, key=' '): tmp = [] for i in x: if (i[0:len(key)] != key) and len(tmp): yield ' '.join(tmp) tmp = [] if i.startswith(key): i = i[5:] tmp.append(i) if len(tmp): yield ' '.join(tmp) # Open the file myfile = open_as_needed(filename, 'rt') # Clean up the file and take out the next line (\n) value = myfile.read().rstrip() list_values = value.split('\n') list_values = list(filter(None, list_values)) # Call the merge function and assign the result to the list of metars list_values = list(merge(list_values)) # Remove the short lines that do not contain METAR observations or contain # METAR observations that lack a robust amount of data metars = [] for metar in list_values: if len(metar) > 25: metars.append(metar) else: continue # Create a dictionary with all the station name, locations, and elevations master = station_info # Setup lists to append the data to station_id = [] lat = [] lon = [] elev = [] date_time = [] wind_dir = [] wind_spd = [] current_wx1 = [] current_wx2 = [] current_wx3 = [] skyc1 = [] skylev1 = [] skyc2 = [] skylev2 = [] skyc3 = [] skylev3 = [] skyc4 = [] skylev4 = [] cloudcover = [] temp = [] dewp = [] altim = [] current_wx1_symbol = [] current_wx2_symbol = [] current_wx3_symbol = [] # Loop through the different metars within the text file for metar in metars: try: # Parse the string of text and assign to values within the named tuple metar = parse_metar_to_named_tuple(metar, master, year=year, month=month) # Append the different variables to their respective lists station_id.append(metar.station_id) lat.append(metar.latitude) lon.append(metar.longitude) elev.append(metar.elevation) date_time.append(metar.date_time) wind_dir.append(metar.wind_direction) wind_spd.append(metar.wind_speed) current_wx1.append(metar.current_wx1) current_wx2.append(metar.current_wx2) current_wx3.append(metar.current_wx3) skyc1.append(metar.skyc1) skylev1.append(metar.skylev1) skyc2.append(metar.skyc2) skylev2.append(metar.skylev2) skyc3.append(metar.skyc3) skylev3.append(metar.skylev3) skyc4.append(metar.skyc4) skylev4.append(metar.skylev4) cloudcover.append(metar.cloudcover) temp.append(metar.temperature) dewp.append(metar.dewpoint) altim.append(metar.altimeter) current_wx1_symbol.append(metar.current_wx1_symbol) current_wx2_symbol.append(metar.current_wx2_symbol) current_wx3_symbol.append(metar.current_wx3_symbol) except ParseError: continue df = pd.DataFrame({'station_id': station_id, 'latitude': lat, 'longitude': lon, 'elevation': elev, 'date_time': date_time, 'wind_direction': wind_dir, 'wind_speed': wind_spd, 'current_wx1': current_wx1, 'current_wx2': current_wx2, 'current_wx3': current_wx3, 'low_cloud_type': skyc1, 'low_cloud_level': skylev1, 'medium_cloud_type': skyc2, 'medium_cloud_level': skylev2, 'high_cloud_type': skyc3, 'high_cloud_level': skylev3, 'highest_cloud_type': skyc4, 'highest_cloud_level': skylev4, 'cloud_coverage': cloudcover, 'air_temperature': temp, 'dew_point_temperature': dewp, 'altimeter': altim, 'present_weather': current_wx1_symbol, 'past_weather': current_wx2_symbol, 'past_weather2': current_wx3_symbol}, index=station_id) # Calculate sea-level pressure from function in metpy.calc df['air_pressure_at_sea_level'] = altimeter_to_sea_level_pressure( altim * units('inHg'), elev * units('meters'), temp * units('degC')).to('hPa').magnitude # Use get wind components and assign them to eastward and northward winds df['eastward_wind'], df['northward_wind'] = wind_components((df.wind_speed.values * units.kts), df.wind_direction.values * units.degree) # Drop duplicate values df = df.drop_duplicates(subset=['date_time', 'latitude', 'longitude'], keep='last') # Round altimeter and sea-level pressure values df['altimeter'] = df.altimeter.round(2) df['air_pressure_at_sea_level'] = df.air_pressure_at_sea_level.round(2) # Set the units for the dataframe df.units = col_units pandas_dataframe_to_unit_arrays(df) return df