inverse_distance_to_points¶
- 
metpy.interpolate.inverse_distance_to_points(points, values, xi, r, gamma=None, kappa=None, min_neighbors=3, kind='cressman')[source]¶
- Generate an inverse distance weighting interpolation to the given points. - Values are assigned to the given interpolation points based on either [Cressman1959] or [Barnes1964]. The Barnes implementation used here based on [Koch1983]. - Parameters
- points (array_like, shape (n, 2)) – Coordinates of the data points. 
- values (array_like, shape (n,)) – Values of the data points. 
- xi (array_like, shape (M, 2)) – Points to interpolate the data onto. 
- r (float) – Radius from grid center, within which observations are considered and weighted. 
- gamma (float) – Adjustable smoothing parameter for the barnes interpolation. Default None. 
- kappa (float) – Response parameter for barnes interpolation. Default None. 
- min_neighbors (int) – Minimum number of neighbors needed to perform barnes or cressman interpolation for a point. Default is 3. 
- kind (str) – Specify what inverse distance weighting interpolation to use. Options: ‘cressman’ or ‘barnes’. Default ‘cressman’ 
 
- Returns
- img ((M,) ndarray) – Array representing the interpolated values for each input point in xi 
 - See also